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APPENDIX
We define here two measures. Let O � {õj}nj=1 be a
set of objects, and let P and Ṗ be two soft clusterings.
Let αP (õj1 , õj2) be the number of clusters shared by
objects õj1 and õj2 in clustering P , and let αṖ (õj1 , õj2) be
similarly defined. The extended bcubed (EBC) measure
[33] is based on extended bcubed precision and extended
bcubed recall:

EBCP(P, Ṗ ) � 1

n

n�

j1=1

n�

j2=1

min{αP (õj1 , õj2), αṖ (õj1 , õj2)}
�n

j2=1 αP (õj1 , õj2)

(14a)

EBCR(P, Ṗ ) � 1

n

n�

j1=1

n�

j2=1

min{αP (õj1 , õj2), αṖ (õj1 , õj2)}
�n

j2=1 αṖ (õj1 , õj2)
.

(14b)

EBC is defined by default as

EBC(P, Ṗ ) � 2 · EBCP(P, Ṗ ) · EBCR(P, Ṗ )

EBCP(P, Ṗ ) + EBCR(P, Ṗ )
. (15)

The other measure is defined as follows. Let βP (õj)
be the number of clusters to which object õj belongs
in P minus 1, and let βṖ (õj) be similarly defined. The
agreements and disagreements associated with a pair
(j1, j2) are

aP,Ṗ
G (õj1 , õj2) = min

�
αP (õj1 , õj2), αṖ (õj1 , õj2)

�

+

2�

i=1

min
�
βP (õji), βṖ (õji)

�
(16)

and

dP,Ṗ
G (õj1 , õj2) = |αP (õj1 , õj2)− αṖ (õj1 , õj2)|

+

2�

i=1

|βP (õji)− βṖ (õji)|, (17)

respectively. Summing up aP,Ṗ
G (õj1 , õj2) and

dP,Ṗ
G (õj1 , õj2) over all ordered pairs (õj1 , õj2) (j1 < j2)

results in the following overall measures of agreements
(aP,Ṗ

G ) and disagreements (dP,Ṗ
G ) between P and Ṗ :

aP,Ṗ
G =

n−1�

j1=1

n�

j2=j1+1

aP,Ṗ
G (õj1 , õj2) and (18)

dP,Ṗ
G =

n−1�

j1=1

n�

j2=j1+1

dP,Ṗ
G (õj1 , õj2) (19)

The Campello soft index (CSI) [36] is defined by

CSI(P, Ṗ ) � aP,Ṗ
G

aP,Ṗ
G + dP,Ṗ

G

. (20)

We hereafter assume that P , Ṗ , and P̂ are the soft
clustering representations of B, Ḃ, and B̂, respectively.

Proposition 1. There are non-equivalent biclusterings B and
Ḃ such that P ≡ Ṗ .

Proof: Let B be a biclustering such that some of
the matrix entries are not biclustered, and let Ḃ be the
biclustering B with a new bicluster added that has only
one entry from the matrix entries not biclustered in
B. This new bicluster is transformed into a singleton
for Ṗ by Eq. 12, whereas Eq. 13 creates an equivalent
singleton for P . In other words, the bicluster added in
B to produce Ḃ is superfluous from the point of view
of our transformation.

Proposition 2. If B and Ḃ are non-equivalent non-
degenerate biclusterings, then P �≡ Ṗ .

Proof: Let k and q be the number of biclusters in
B and Ḃ, respectively. Suppose that P � {Pi}ki=1 ≡
Ṗ � {Ṗi}qi=1. Thus, k = q and there is a bijection
{(ti, yi)}ki=1 such that Pti ≡ Ṗyi

for all i. Without loss
of generality, suppose that Pt1 , Pt2 , . . . , Ptk (respectively,
Ṗy1

, Ṗy2
, . . . , Ṗyq

) are the non singletons. Clearly, k =

q = k = q. The bijection {(ti, yi)}ki=1 implies that there
is a corresponding bijection between B and Ḃ making
B ≡ Ḃ, which contradicts the assumption that B �≡ Ḃ.

We will adopt the following notation in several proofs.
Let C1 and C2 be two sets of objects from O = {õj}nj=1,
and let f(·, ·) be a function on O × O. When proving
some property of the Scsi measure, f(C1, C2) = x means
f(õj1 , õj2) = x for all õj1 ∈ C1 and õj2 ∈ C2 such that j1 �=
j2. When proving some property of the Sebc measure,
f(C1, C2) = x means f(õj1 , õj2) = x for all õj1 ∈ C1 and
õj2 ∈ C2. In both cases, for a function f(·), f(C1) = x
means f(õj) = x for all õj ∈ C1.

Proposition 3. The Scsi measure is sensitive to the size of
spurious biclusters (Def. 1).

Proof: Let B, B̂, and Ḃ be biclusterings, as in Def. 1,
and remember that O is the set of objects. Let {Pti}xi=1

be the set of soft clusters corresponding to the spurious
biclusters {Bti}xi=1 in B, and similarly define {P̂ti}xi=1

for B̂. Define C1
s �

�x
i=1 Pti and C2

s �
�x

i=1 P̂ti . Note
that C1

s ⊂ C2
s . We know that

αṖ (C
2
s , O) = βṖ (C

2
s ) = 0,

αP (O,O − C2
s ) = αP̂ (O,O − C2

s ),

βP (O − C2
s ) = βP̂ (O − C2

s ),

αP (C
2
s , C

2
s ) ≤ αP̂ (C

2
s , C

2
s ), and

βP (C
2
s ) ≤ βP̂ (C

2
s ).

Thus,

aP,Ṗ
G (C2

s , O − C2
s ) = min{βP (O − C2

s ), βṖ (O − C2
s )}

= min{βP̂ (O − C2
s ), βṖ (O − C2

s )}
= aP̂ ,Ṗ

G (C2
s , O − C2

s ),
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aP,Ṗ
G (C2

s , C
2
s ) = 0 = aP̂ ,Ṗ

G (C2
s , C

2
s ), and

aP,Ṗ
G (O − C2

s , O − C2
s ) = aP̂ ,Ṗ

G (O − C2
s , O − C2

s ).

Thus, aP,Ṗ
G (O,O) = aP̂ ,Ṗ

G (O,O). Observe that

dP,Ṗ
G (C2

s , O − C2
s ) = αP (C

2
s , O − C2

s ) + βP (C
2
s )

+ |βP (O − C2
s )− βṖ (O − C2

s )|
= αP̂ (C

2
s , O − C2

s ) + βP (C
2
s )

+ |βP̂ (O − C2
s )− βṖ (O − C2

s )|
≤ αP̂ (C

2
s , O − C2

s ) + βP̂ (C
2
s )

+ |βP̂ (O − C2
s )− βṖ (O − C2

s )|
= dP̂ ,Ṗ

G (C2
s , O − C2

s ),

dP,Ṗ
G (C2

s , C
2
s ) = αP (C

2
s , C

2
s ) + βP (C

2
s ) + βP (C

2
s )

≤ αP̂ (C
2
s , C

2
s ) + βP̂ (C

2
s ) + βP̂ (C

2
s )

(21)

= dP̂ ,Ṗ
G (C2

s , C
2
s ), and

dP,Ṗ
G (O − C2

s , O − C2
s ) = dP̂ ,Ṗ

G (O − C2
s , O − C2

s ).

Thus, dP,Ṗ
G (O,O) ≤ dP̂ ,Ṗ

G (O,O).
Let Pt be the soft cluster corresponding to a spurious

bicluster Bt that was increased, giving rise to B̂t and
P̂t. Let õj1 and õj2 be two objects from P̂t such that
õj1 ∈ Pt and õj2 �∈ Pt. Thus, αP̂ (õj1 , õj2) > αP (õj1 , õj2),
dP,Ṗ
G (õj1 , õj2) < dP̂ ,Ṗ

G (õj1 , õj2) (Eq. (21)), and CSI(P, Ṗ ) >
CSI(P̂ , Ṗ ).

Proposition 4. The Sebc measure is sensitive to the size of
spurious biclusters (Def. 1).

Proof: Let B, B̂, and Ḃ be biclusterings, as in Def. 1,
and remember that O is the set of objects. Let C1

s and C2
s

be the sets defined in the proof of Proposition 3. Note
that

αP (C
2
s , C

2
s ) ≥ αṖ (C

2
s , C

2
s ),

αP̂ (C
2
s , C

2
s ) ≥ αṖ (C

2
s , C

2
s ), and

αP (O,O − C2
s ) = αP̂ (O,O − C2

s ).

The nominators of Eqs. (14) are equal if one compares P
with Ṗ or P̂ with Ṗ . Thus, EBCR(P, Ṗ ) = EBCR(P̂ , Ṗ ).
EBCP(P, Ṗ ) ≥ EBCP(P̂ , Ṗ ) because αP̂ (O,O) ≥
αP (O,O).

Let Pt be the soft cluster corresponding to a spurious
bicluster Bt that was increased, giving rise to B̂t and
P̂t. Let õj1 and õj2 be two objects from P̂t such that
õj1 ∈ Pt and õj2 �∈ Pt. Thus, αP̂ (õj1 , õj2) > αP (õj1 , õj2),
EBCP(P, Ṗ ) > EBCP(P̂ , Ṗ ), and EBC(P, Ṗ ) > EBC(P̂ , Ṗ ).

Proposition 5. The Srnia and Sce measures penalize solutions
that do not cover all reference biclusters (Def. 2).

Proof: Let B and Ḃ be as given in Def. 2. We have
Ṅj1,j2 ≥ Nj1,j2 for all j1 and j2, and there are j1 and j2
such that Ṅj1,j2 > Nj1,j2 (Eqs. (3) and (4)). Thus, |U | > |I|,

and Srnia follows the property given by Def. 2. We also
have Srnia(B, Ḃ) ≥ Sce(B, Ḃ) by Proposition 1 in [30].
Thus, Sce also has the property.

Proposition 6. The Sprec, Su, and Serec measures do not
always penalize solutions that do not cover all reference
biclusters (Def. 2).

Proof: Let B and Ḃ be as given in Def. 2, where
B � {B1} and Ḃ � {Ḃ1, Ḃ2} such that B1 ≡ Ḃ1 ≡ Ḃ2. We
would have Sprec(B, Ḃ) = Su(B, Ḃ) = Serec(B, Ḃ) = 1,
violating the condition given by Def. 2.

Proposition 7. The Scsi measure penalizes solutions that do
not cover all reference biclusters (Def. 2).

Proof: Let B and Ḃ be as given in Def. 2. We have
αP (j1, j2) ≤ αṖ (j1, j2) for all j1 �= j2, and the inequality
is attained for at least one pair (j1, j2). Thus, dP,Ṗ

G > 0
and CSI(P, Ṗ ) < 1.

Proposition 8. The Sebc measure penalizes solutions that do
not cover all reference biclusters (Def. 2).

Proof: Let B and Ḃ be as given in Def. 2. We have
αP (j1, j2) ≤ αṖ (j1, j2) for all j1 and j2. The inequality
is attained for at least one pair (j1, j2), implying that
EBCR(P, Ṗ ) < 1 and EBC(P, Ṗ ) < 1.

Proposition 9. The Srnia measure penalizes solutions for
non-intersecting area (Def. 3).

Proof: Let B, Ḃ, and B̂ be three biclusterings, as
in Def. 3, and let S be the set of matrix elements, as
in Def. 3. The matrix elements in S are those corre-
sponding to j1 and j2 such that Ṅj1,j2 = 0. We have
Nj1,j2 = N̂j1,j2 for all j1 and j2 such that Ṅj1,j2 > 0.
Thus, min{Nj1,j2 , Ṅj1,j2} = min{N̂j1,j2 , Ṅj1,j2} for all j1
and j2. Since Nj1,j2 ≤ N̂j1,j2 for all j1 and j2, we have
max{Nj1,j2 , Ṅj1,j2} ≤ max{N̂j1,j2 , Ṅj1,j2} for all j1 and j2.
Therefore, Srnia(B, Ḃ) ≥ Srnia(B̂, Ḃ). Since Nj1,j2 < N̂j1,j2

for at least a pair (j1, j2) such that Ṅj1,j2 = 0, we have
max{Nj1,j2 , Ṅj1,j2} < max{N̂j1,j2 , Ṅj1,j2} for such a pair
and Srnia(B, Ḃ) > Srnia(B̂, Ḃ).

Proposition 10. The Sce measure penalizes solutions for non-
intersecting area (Def. 3).

Proof: Let B, Ḃ, and B̂ be three biclusterings, as in
Def. 3. We know from the proof of Proposition 9 that
|U | increases from comparing B with Ḃ to comparing B̂
with Ḃ. On the other hand, dmax (Eq. 6) does not change
from comparing B with Ḃ to comparing B̂ with Ḃ. Thus,
Sce(B, Ḃ) > Sce(B̂, Ḃ).

Proposition 11. The Swjac and Swdic measures do not always
penalize solutions for non-intersecting area (Def. 3).

Proof: Consider a data matrix A ∈ R4·4. Let B �
{B1, B2}, B1 � ({2, 3, 4}, {1, 2}), B2 � ({2, 3, 4}, {3}),
Ḃ � {Ḃ1}, Ḃ1 � ({2, 3, 4}, {3, 4}), B̂ � {B̂1, B̂2}, B̂1 �
({2, 3, 4}, {1, 2}), and B̂2 � ({1, 2, 3, 4}, {3}). Note that B,
Ḃ, and B̂ follow the biclustering definitions given in Def.
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3. However, Swjac(B, Ḃ) = 0.167 < 0.171 = Swjac(B̂, Ḃ)
and Swdic(B, Ḃ) = 0.22 < 0.24 = Swdic(B̂, Ḃ).

Proposition 12. Let B, Ḃ, and B̂ be three biclusterings, as
in Def. 3. We have Scsi(B, Ḃ) ≥ Scsi(B̂, Ḃ).

Proof: Let S be the set of matrix elements, as in Def.
3. Define C as the set of elements from O corresponding
to the matrix elements in S, and let C � O−C. We have

αP (C,C) = αP̂ (C,C),

αP (C,C) ≤ αP̂ (C,C),

αP (C,C) ≤ αP̂ (C,C),

αṖ (C,C) = αṖ (C,C) = 0,

βP (C) = βP̂ (C),

βP (C) ≤ βP̂ (C), and
βṖ (C) = 0.

Thus, aP,Ṗ
G (C,C) = aP̂ ,Ṗ

G (C,C) and dP,Ṗ
G (C,C) =

dP̂ ,Ṗ
G (C,C). We have

aP,Ṗ
G (C,C) = min{βP (C), βṖ (C)}

= min{βP̂ (C), βṖ (C)}
= aP̂ ,Ṗ

G (C,C)

and

dP,Ṗ
G (C,C) = αP (C,C) + βP (C) + |βP (C)− βṖ (C)|

= αP (C,C) + βP (C) + |βP̂ (C)− βṖ (C)|
≤ αP̂ (C,C) + βP̂ (C) + |βP̂ (C)− βṖ (C)|

(22)

= dP̂ ,Ṗ
G (C,C).

Note that

aP,Ṗ
G (C,C) = 0 = aP̂ ,Ṗ

G (C,C)

and

dP,Ṗ
G (C,C) = αP (C,C) + 2βP (C)

≤ αP̂ (C,C) + 2βP̂ (C) (23)

= dP̂ ,Ṗ
G (C,C).

Thus, aP,Ṗ
G = aP̂ ,Ṗ

G , dP,Ṗ
G ≤ dP̂ ,Ṗ

G , CSI(P, Ṗ ) ≥ CSI(P̂ , Ṗ ),
and Scsi(B, Ḃ) ≥ Scsi(B̂, Ḃ).

Proposition 13. The Scsi measure penalizes solutions for
non-intersecting area (Def. 3) in the domain of non-degenerate
biclusterings.

Proof: Let B, Ḃ, and B̂ be three biclusterings, as
in Def. 3, with the additional restriction of being non-
degenerates. Let S be the set of matrix elements, as in
Def. 3. Define C as the set of elements from O corre-
sponding to the matrix elements in S. If there are biclus-
ters in B̂ originated from the expansion of biclusters in
B, there is an object õj ∈ C that belongs to more clusters
in P̂ than in P , meaning that βP̂ (õj) > βP (õj). If there
are new biclusters in B̂, let B̂i be one of these. There is

a pair õj1 , õj2 ∈ C (j1 �= j2) that belongs to more clusters
in P̂ than in P , meaning that αP̂ (õj1 , õj2) > αP (õj1 , õj2).
In the first case, dP̂ ,Ṗ

G > dP,Ṗ
G because of Ineq. (22). In the

second case, dP̂ ,Ṗ
G > dP,Ṗ

G because of Ineq. (23). Therefore,
CSI(P, Ṗ ) > CSI(P̂ , Ṗ ) and Scsi(B, Ḃ) > Scsi(B̂, Ḃ).

Proposition 14. Let B, Ḃ, and B̂ be three biclusterings, as
in Def. 3. We have Sebc(B, Ḃ) ≥ Sebc(B̂, Ḃ).

Proof: Let S be the set of matrix elements, as in Def.
3. Define C as the set of elements from O corresponding
to the matrix elements in S, and let C � O−C. We have
αP (C,C) = αP̂ (C,C), αṖ (C,C) = 0, αṖ (õj1 , õj2) = 0 for
all õj1 , õj2 ∈ C s.t. j1 �= j2, αP (õj , õj) ≥ αṖ (õj , õj) for all
õj ∈ C, and αP̂ (õj , õj) ≥ αṖ (õj , õj) for all õj ∈ C. Thus,
min{αP (O,O), αṖ (O,O)} = min{αP̂ (O,O), αṖ (O,O)}.
Since

αP̂ (C,C) ≥ αP (C,C) and (24)
αP̂ (C,C) ≥ αP (C,C), (25)

we have EBC(P, Ṗ ) ≥ EBC(P̂ , Ṗ ) and Sebc(B, Ḃ) ≥
Sebc(B̂, Ḃ).

Proposition 15. The Sebc measure penalizes solutions for
non-intersecting area (Def. 3) in the domain of non-degenerate
biclusterings.

Proof: Let B, Ḃ, and B̂ be three biclusterings, as
in Def. 3, with the additional restriction of being non-
degenerate. Let S be the set of matrix elements, as
in Def. 3. Define C as the set of elements from O
corresponding to the matrix elements in S, and let
C � O − C. If there are biclusters in B̂ originated
from the expansion of biclusters in B, there is a pair
õj1 , õj2 ∈ C s.t. j1 �= j2 or a pair õj1 ∈ C, õj2 ∈ C that
belongs to more clusters in P̂ than in P , meaning that
αP̂ (õj1 , õj2) > αP (õj1 , õj2). If there are new biclusters in
B̂, let B̂i be one of these. There is a pair õj1 , õj2 ∈ C
s.t. j1 �= j2 that belongs to more clusters in P̂ than
in P , meaning that αP̂ (õj1 , õj2) > αP (õj1 , õj2). In both
cases, we can conclude from Ineqs. (24) and (25) that
EBC(P, Ṗ ) > EBC(P̂ , Ṗ ) and Sebc(B, Ḃ) > Sebc(B̂, Ḃ).

Proposition 16. The Scsi measure penalizes solutions for
multiple biclusters coverage (Def. 4).

Proof: Let B and Ḃ be two biclusterings, as in Def. 4.
We have αP (O,O) ≥ αṖ (O,O) and βP (O) = βṖ (O) = 0.
There are õj1 and õj2 s.t. j1 �= j2 such that αP (õj1 , õj2) >

αṖ (õj1 , õj2), implying that dP,Ṗ
G > 0, CSI(P, Ṗ ) < 1, and

Scsi(B, Ḃ) < 1.

Proposition 17. The Sebc measure penalizes solutions for
multiple biclusters coverage (Def. 4).

Proof: Let B and Ḃ be two biclusterings, as in Def.
4. Note that αP (O,O) ≥ αṖ (O,O). There are õj1 and õj2
s.t. j1 �= j2 such that αP (õj1 , õj2) > αṖ (õj1 , õj2), implying
that EBCP(P, Ṗ ) < 1, EBC(P, Ṗ ) < 1, and Sebc(B, Ḃ) <
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1.

Proposition 18. The Sprel, Sprec, and Sl&w measures penalize
solutions for multiple biclusters coverage (Def. 4).

Proof: Let B and Ḃ be two biclusterings, as in
Def. 4. Since the biclusters in Ḃ do not overlap, we
have the proper subset relationships Ḃr

i ⊂ Br
1 for all

i or Ḃc
i ⊂ Bc

1 for all i. Thus, |Br
1 ∪ Ḃr

i | > |Br
1 ∩ Ḃr

i |
for all i or |Bc

1 ∪ Ḃc
i | > |Bc

1 ∩ Ḃc
i | for all i. We have

Sr(B, Ḃ) < 1 or Sc(B, Ḃ) < 1 (Eqs. (1) and (2)), implying
that Sprel(B, Ḃ) < 1. Similarly, Sprec(B, Ḃ) < 1 and
Sl&w(B, Ḃ) < 1.

Proposition 19. The Sstm, Swjac, Swdic, Say, Serel, and Serec
measures penalize solutions for multiple biclusters coverage
(Def. 4).

Proof: Let B and Ḃ be two biclusterings, as in Def.
4. Since the biclusters in Ḃ do not overlap, we have the
proper subset relationship Ḃr

i × Ḃc
i ⊂ Br

1 × Bc
1 for all i.

Thus, D(B1, Ḃi) < 1 and J(B1, Ḃi) < 1 for all i, implying
that Sstm(B, Ḃ) < 1, Swjac(B, Ḃ) < 1, Swdic(B, Ḃ) < 1,
Serel(B, Ḃ) < 1, and Serec(B, Ḃ) < 1. From Say(B, Ḃ) <
Serel(B, Ḃ), we also have Say(B, Ḃ) < 1.

Proposition 20. The Scsi measure penalizes solutions with
repetitive biclusters (Def. 5).

Proof: Let B, Ḃ, and B̂ be biclusterings, as in Def. 5.
Let Cr be the set of objects from O corresponding to the
matrix entries of the biclusters in B that were replicated.
We have

αP (O,O − Cr) = αP̂ (O,O − Cr), (26)
αP̂ (Cr, Cr) > αP (Cr, Cr) ≥ αṖ (Cr, Cr), (27)
βP (O − Cr) = βP̂ (O − Cr), and

βP̂ (Cr) > βP (Cr) ≥ βṖ (Cr).

We conclude that aP,Ṗ
G (O,O) = aP̂ ,Ṗ

G (O,O) and aP,Ṗ
G =

aP̂ ,Ṗ
G .
We have

dP,Ṗ
G (O,O − Cr) = |αP (O,O − Cr)− αṖ (O,O − Cr)|

+ |βP (O)− βṖ (O)|
+ |βP (O − Cr)− βṖ (O − Cr)|
= |αP̂ (O,O − Cr)− αṖ (O,O − Cr)|
+ |βP (O)− βṖ (O)|
+ |βP̂ (O − Cr)− βṖ (O − Cr)|
≤ dP̂ ,Ṗ

G (O,O − Cr)

and

dP,Ṗ
G (Cr, Cr) = |αP (Cr, Cr)− αṖ (Cr, Cr)|

+ 2|βP (Cr)− βṖ (Cr)|
< |αP̂ (Cr, Cr)− αṖ (Cr, Cr)|
+ 2|βP̂ (Cr)− βṖ (Cr)|
= dP̂ ,Ṗ

G (Cr, Cr)

Thus, dP̂ ,Ṗ
G > dP,Ṗ

G , CSI(P, Ṗ ) > CSI(P̂ , Ṗ ), and
Scsi(B, Ḃ) > Scsi(B̂, Ḃ).

Proposition 21. The Sebc measure penalizes solutions with
repetitive biclusters (Def. 5).

Proof: Let B, Ḃ, and B̂ be biclusterings, as in Def. 5.
Let Cr be the set of objects from O corresponding to the
matrix entries of the biclusters in B that were replicated.
We know from Eqs. (26) and (27) that the nominators of
Eqs. (14) do not change from comparing P with Ṗ to
comparing P̂ with Ṗ , and that αP̂ (O,O) ≥ αP (O,O).
We have õj1 and õj2 (for which j1 = j2 is allowed) such
that αP̂ (õj1 , õj2) > αP (õj1 , õj2). Therefore, EBCP(P, Ṗ ) >

EBCP(P̂ , Ṗ ), EBC(P, Ṗ ) > EBC(P̂ , Ṗ ), and Sebc(B, Ḃ) >
Sebc(B̂, Ḃ).

Proposition 22. The Sprec and Serec measures do not have
the homogeneity property (Def. 7).

Proof: Consider the non-overlapping biclusterings
B and B̂ represented by Figs. 13b and 13c and the
reference solution Ḃ represented by Fig. 13a. We have
Sprec(B, Ḃ) = Sprec(B̂, Ḃ) = 0.74 and Serec(B, Ḃ) =
Serec(B̂, Ḃ) = 0.55.

ro
w
s

columns

(a) Data matrix A ∈ R4·14.

(b) Biclustering B. (c) Biclustering B̂.

Fig. 13: Difference in homogeneity.

Proposition 23. The Scsi measure has the homogeneity prop-
erty (Def. 7).

Proof: Let B, B̂, and Ḃ be three biclusterings, as
in Def. 7. Let C1

s be the x objects swapped from Pi1 ,
C1
n be the objects from the minor category in Pi1 that

were not swapped, and C1
r be the objects from the

main category in Pi1 . Analogously, define C2
s , C2

n , and
C2
r . Since B, B̂, and Ḃ are non-overlapping solutions,

we have βP (O) = βP̂ (O) = βṖ (O) = 0. Thus, the
eventual difference between aP,Ṗ

G (õj1 , õj2) (respectively,
dP,Ṗ
G (õj1 , õj2)) and aP̂ ,Ṗ

G (õj1 , õj2) (dP̂ ,Ṗ
G (õj1 , õj2)) can only

be due to the eventual difference between αP (õj1 , õj2)
and αP̂ (õj1 , õj2) (see Eqs. (16) and (17)).

We conclude from Table 12 that aP,Ṗ
G = aP̂ ,Ṗ

G +

|C1
s ||C1

n| + |C2
s ||C2

n| = aP̂ ,Ṗ
G + x(|C1

n| + |C2
n|), where x =

|C1
s | = |C2

s |, as in Def. 7. Table 13 shows the differences in
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TABLE 12: Differences in a·,·G (·, ·) by changing P to P̂ .

aP,Ṗ
G (C1

s , C
1
n) = min{1, 1} > min{0, 1} = aP̂ ,Ṗ

G (C1
s , C

1
n)

aP,Ṗ
G (C2

s , C
2
n) = min{1, 1} > min{0, 1} = aP̂ ,Ṗ

G (C2
s , C

2
n)

aP,Ṗ
G (C1

s , C
1
r ) = min{1, 0} = min{0, 0} = aP̂ ,Ṗ

G (C1
s , C

1
r )

aP,Ṗ
G (C2

s , C
2
r ) = min{1, 0} = min{0, 0} = aP̂ ,Ṗ

G (C2
s , C

2
r )

aP,Ṗ
G (C1

s , C
2
n) = min{0, 0} = min{1, 0} = aP̂ ,Ṗ

G (C1
s , C

2
n)

aP,Ṗ
G (C1

n, C
2
s ) = min{0, 0} = min{1, 0} = aP̂ ,Ṗ

G (C1
n, C

2
s )

aP,Ṗ
G (C1

s , C
2
r ) = min{0, 0} = min{1, 0} = aP̂ ,Ṗ

G (C1
s , C

2
r )

aP,Ṗ
G (C1

r , C
2
s ) = min{0, 0} = min{1, 0} = aP̂ ,Ṗ

G (C1
r , C

2
s )

d·,·G (·, ·), implying that dP,Ṗ
G = dP̂ ,Ṗ

G −|C1
s ||C1

n|−|C2
s ||C2

n|−
|C1

s ||C2
n| − |C1

n||C2
s | − |C1

s ||C2
r | − |C1

r ||C2
s | + |C1

s ||C1
r | +

|C2
s ||C2

r | = dP̂ ,Ṗ
G − 2x(|C1

n|+ |C2
n|). Thus,

CSI(P̂ , Ṗ ) =
aP,Ṗ
G − x(|C1

n|+ |C2
n|)

aP,Ṗ
G + dP,Ṗ

G + x(|C1
n|+ |C2

n|)

and Scsi(B, Ḃ) ≥ Scsi(B̂, Ḃ).

TABLE 13: Differences in d·,·G (·, ·) by changing P to P̂ .

dP,Ṗ
G (C1

s , C
1
n) = |1− 1| < |0− 1| = dP̂ ,Ṗ

G (C1
s , C

1
n)

dP,Ṗ
G (C2

s , C
2
n) = |1− 1| < |0− 1| = dP̂ ,Ṗ

G (C2
s , C

2
n)

dP,Ṗ
G (C1

s , C
1
r ) = |1− 0| > |0− 0| = dP̂ ,Ṗ

G (C1
s , C

1
r )

dP,Ṗ
G (C2

s , C
2
r ) = |1− 0| > |0− 0| = dP̂ ,Ṗ

G (C2
s , C

2
r )

dP,Ṗ
G (C1

s , C
2
n) = |0− 0| < |1− 0| = dP̂ ,Ṗ

G (C1
s , C

2
n)

dP,Ṗ
G (C1

n, C
2
s ) = |0− 0| < |1− 0| = dP̂ ,Ṗ

G (C1
n, C

2
s )

dP,Ṗ
G (C1

s , C
2
r ) = |0− 0| < |1− 0| = dP̂ ,Ṗ

G (C1
s , C

2
r )

dP,Ṗ
G (C1

r , C
2
s ) = |0− 0| < |1− 0| = dP̂ ,Ṗ

G (C1
r , C

2
s )

If x = |I(Bi1 , Ḃmi(i1))| = |I(Bi2 , Ḃmi(i2))|, then |C1
n| =

|C2
n| = 0 and Scsi(B, Ḃ) = Scsi(B̂, Ḃ). If Scsi(B, Ḃ) =

Scsi(B̂, Ḃ), then |C1
n| + |C2

n| = 0 (because x > 0, Def.
7) and x = |I(Bi1 , Ḃmi(i1))| = |I(Bi2 , Ḃmi(i2))|.

Proposition 24. The Sebc measure has the homogeneity
property (Def. 7).

Proof: Let B, B̂, and Ḃ be three biclusterings, as in
Def. 7. Let C1

s be the x objects swapped from Pi1 , C1
n be

the objects from the minor category in Pi1 that were not
swapped, and C1

r be the objects from the main category
in Pi1 . Analogously, define C2

s , C2
n , and C2

r . Let

δP,Ṗ
p (õj1) �

�n
j2=1min{αP (õj1 , õj2), αṖ (õj1 , õj2)}�n

j2=1 αP (õj1 , õj2)

such that EBCP(P, Ṗ ) = (1/n)
�n

j1=1 δ
P,Ṗ
p (õj1).

Note that
�

õj1 �∈Pi1
∪Pi2

δP,Ṗ
p (õj1) =

�

õj1 �∈Pi1
∪Pi2

δP̂ ,Ṗ
p (õj1).

TABLE 14: Differences in δ·,·p (·) by changing P to P̂ .

δP,Ṗ
p (C1

s ) =
|C1

s ∪ C1
n|

|Pi1 |
δP̂ ,Ṗ
p (C1

s ) =
|C1

s |
|Pi2 |

δP,Ṗ
p (C2

s ) =
|C2

s ∪ C2
n|

|Pi2 |
δP̂ ,Ṗ
p (C2

s ) =
|C2

s |
|Pi1 |

δP,Ṗ
p (C1

n) =
|C1

s ∪ C1
n|

|Pi1 |
δP̂ ,Ṗ
p (C1

n) =
|C1

n|
|Pi1 |

δP,Ṗ
p (C2

n) =
|C2

s ∪ C2
n|

|Pi2 |
δP̂ ,Ṗ
p (C2

n) =
|C2

n|
|Pi2 |

δP,Ṗ
p (C1

r ) =
|C1

r |
|Pi1 |

δP̂ ,Ṗ
p (C1

r ) =
|C1

r |
|Pi1 |

δP,Ṗ
p (C2

r ) =
|C2

r |
|Pi2 |

δP̂ ,Ṗ
p (C2

r ) =
|C2

r |
|Pi2 |

We conclude from Table 14 and after some algebraic
manipulation that

�

õj1∈Pi1
∪Pi2

δP,Ṗ
p (õj1) =

(|C1
s |+ |C1

n|)2
|Pi1 |

+
|C1

r |2
|Pi1 |

+
(|C2

s |+ |C2
n|)2

|Pi2 |
+

|C2
r |2

|Pi2 |
and

�

õj1∈Pi1
∪Pi2

δP̂ ,Ṗ
p (õj1) =

|C2
s |2 + |C1

n|2 + |C1
r |2

|Pi1 |

+
|C1

s |2 + |C2
n|2 + |C2

r |2
|Pi2 |

.

From x = |C1
s | = |C2

s |, we have

EBCP(P̂ , Ṗ )− EBCP(P, Ṗ ) =
−2x

n

� |C1
n|

|Pi1 |
+

|C2
n|

|Pi2 |
�
. (28)

Let

δP,Ṗ
r (õj1) �

�n
j2=1min{αP (õj1 , õj2), αṖ (õj1 , õj2)}�n

j2=1 αṖ (õj1 , õj2)

such that EBCR(P, Ṗ ) = (1/n)
�n

j1=1 δ
P,Ṗ
r (õj1). The only

difference between δP,Ṗ
p (õj1) and δP,Ṗ

r (õj1) lies in the
denominators. Thus,

�

õj1∈Pi1
∪Pi2

δP,Ṗ
r (õj1) =

(|C1
s |+ |C1

n|)2
|Ṗmi(i1)|

+
(|C2

s |+ |C2
n|)2

|Ṗmi(i2)|

+
|C1

r |2
|Ṗma(i1)|

+
|C2

r |2
|Ṗma(i2)|

and
�

õj1∈Pi1∪Pi2

δP̂ ,Ṗ
r (õj1) =

|C1
s |2 + |C1

n|2
|Ṗmi(i1)|

+
|C2

s |2 + |C2
n|2

|Ṗmi(i2)|

+
|C1

r |2
|Ṗma(i1)|

+
|C2

r |2
|Ṗma(i2)|

.
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Therefore,

EBCR(P̂ , Ṗ )− EBCR(P, Ṗ ) =
−2x

n

� |C1
n|

|Ṗmi(i1)|
+

|C2
n|

|Ṗmi(i2)|
�
.

(29)

We conclude from (28) and (29) that EBC(P, Ṗ ) ≥
EBC(P̂ , Ṗ ) and Sebc(B, Ḃ) ≥ Sebc(B̂, Ḃ). If x =
|I(Bi1 , Ḃmi(i1))| = |I(Bi2 , Ḃmi(i2))|, then |C1

n| = |C2
n| = 0

and Sebc(B, Ḃ) = Sebc(B̂, Ḃ). If Sebc(B, Ḃ) = Sebc(B̂, Ḃ),
then |C1

n| = |C2
n| = 0 (because x > 0, Def. 7) and

x = |I(Bi1 , Ḃmi(i1))| = |I(Bi2 , Ḃmi(i2))|.

Proposition 25. We have Sce(B, Ḃ) = 1 iff B ≡ Ḃ.

Proof: Clearly, B ≡ Ḃ implies that Sce = 1. Let k
be the number of biclusters in B and q the number of
biclusters in Ḃ. Suppose that Sce(B, Ḃ) = 1, and let
{(ti, yi)}min{k,q}

i=1 be the unique relation that maximizes
Eq. (6). Note that |U | ≥ �

j1,j2
Nj1,j2 =

�k
i=1 |Br

i ×Bc
i | ≥

dmax and |U | ≥ �
j1,j2

Ṅj1,j2 =
�q

i=1 |Ḃr
i × Ḃc

i | ≥ dmax.
We have from |U | = dmax that

�k
i=1 |Br

i × Bc
i | = dmax ≤�min{k,q}

i=1 |Br
ti × Bc

ti | ≤ �k
i=1 |Br

i × Bc
i |, implying that�k

i=1 |Br
i ×Bc

i | =
�min{k,q}

i=1 |Br
ti ×Bc

ti | and k = min{k, q}.
Similarly,

�q
i=1 |Ḃr

i ×Ḃc
i | =

�min{k,q}
i=1 |Ḃr

yi
×Ḃc

yi
| and q =

min{k, q}. Thus, k = q. From dmax =
�min{k,q}

i=1 |Br
ti ×Bc

ti |
we have Br

ti × Bc
ti ⊆ Ḃr

yi
× Ḃc

yi
for all i. Similarly,

Ḃr
yi

× Ḃc
yi

⊆ Br
ti × Bc

ti for all i, and then Br
ti × Bc

ti =

Ḃr
yi
× Ḃc

yi
for all i. Thus, B ≡ Ḃ.

Proposition 26. We have Sfabi(B, Ḃ) = 1 iff B ≡ Ḃ.

Proof: Clearly, B ≡ Ḃ implies that Sfabi = 1. Suppose
that Sfabi(B, Ḃ) = 1, and let {(ti, yi)}min{k,q}

i=1 be the opti-
mal unique relation required by Sfabi. The denominator
of Eq. (9) shows that Sfabi attains 1 only when comparing
solutions with the same number of biclusters, which
makes {(ti, yi)}min{k,q}

i=1 a bijection. Sfabi attains 1 only if
J(Bti , Ḃyi

) = 1 for all i, and J(Bti , Ḃyi
) attains 1 only if

Bti ≡ Ḃyi . Thus, B ≡ Ḃ.

Proposition 27. There are two non-equivalent biclusterings
B and Ḃ such that Scsi(B, Ḃ) = Sebc(B, Ḃ) = 1.

Proof: Let B be a biclustering in which one or more
matrix elements were not biclustered. Then add one bi-
cluster in B that has only one of the matrix elements that
were not biclustered, and let Ḃ be the resulting solution.
Applying the transformation approach given in Section
5 to B and Ḃ, we have two equivalent soft clusterings
P and Ṗ , implying that CSI(P, Ṗ ) = EBC(P, Ṗ ) = 1 and
Scsi(B, Ḃ) = Sebc(B, Ḃ) = 1.

Proposition 28. There are two non-equivalent non-
degenerate biclusterings B and Ḃ for which Scsi(B, Ḃ) =
Sebc(B, Ḃ) = 1.

Proof: The biclusterings in Fig. 14 are given by
B � {Bi}4i=1, Ḃ � {Ḃi}3i=1, B1 � ({1}, {1, 2}), B2 �
({2}, {1, 2}), B3 � ({3}, {1, 2}), B4 � ({1, 2, 3}, {1, 2}),

Ḃ1 � ({1, 2}, {1, 2}), Ḃ2 � ({2, 3}, {1, 2}), and Ḃ3 �
({1, 3}, {1, 2}). We have P = {Pi}4i=1 and Ṗ = {Ṗi}3i=1,
where P1 = {õ1, õ4}, P2 = {õ2, õ5}, P3 = {õ3, õ6},
P4 = {õj}6j=1, Ṗ1 = {õ1, õ2, õ4, õ5}, Ṗ2 = {õ2, õ3, õ5, õ6},
and Ṗ3 = {õ1, õ3, õ4, õ6}.

Note that αP (õj1 , õj2) = αṖ (õj1 , õj2) for all j1 and
j2, and we have βP (õj) = βṖ (õj) for all j. Thus,
dP,Ṗ
G = 0, CSI(P, Ṗ ) = 1, and Scsi(B, Ḃ) = 1. Similarly,

Sebc(B, Ḃ) = 1.

ro
w
s

columns

(a) Biclustering B.

ro
w
s

columns

(b) Biclustering Ḃ.

Fig. 14: Indistinguishable biclusterings for Scsi and Sebc.

Since P �≡ Ṗ , the above proof contradicts Proposi-
tion 1 in [36], which states (in terms of matrices) that
CSI(P, Ṗ ) = 1 iff P ≡ Ṗ .
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TABLE 15: Biclustering algorithms used in the experiments.

Algorithm Implementation Source Reference
bbc C http://www.people.fas.harvard.edu/∼junliu/BBC/ [16]
bcca Matlab http://sn.im/26fzpck [57]
bibit Java http://www.upo.es/eps/bigs/BiBit algorithm.html [55]
bimax R biclust package http://cran.r-project.org/web/packages/biclust/index.html [8]
cc R biclust package http://cran.r-project.org/web/packages/biclust/index.html [4]
las Matlab https://genome.unc.edu/las/ [58]
msbe Java http://www.cs.cityu.edu.hk/∼lwang/software/msbe/help.html [39]
pcluster Windows binary http://haixun.olidu.com/proj/delta.html [54]
xmotifs R biclust package http://cran.r-project.org/web/packages/biclust/index.html [56]
fabia R fabia package http://www.bioconductor.org/packages/2.12/bioc/html/fabia.html [37]

TABLE 16: Algorithm configuration.

Algorithm Configuration

bbc • -k (number of biclusters to be found): k∗

• -n (normalization method): zero-mean, unit-variance column normalization

bcca
• -minc (minimum number of columns): min(nc)
• -maxk (maximum number of biclusters to be found): k∗

• -theta (Pearson correlation threshold): 0.90

bibit • -minr (minimum number of rows): min(nr)
• -minc (minimum number of cols): min(nc)

bimax
• -minr (minimum number of rows): min(nr)
• -minc (minimum number of cols): min(nc)
• -k (number of biclusters to be found): k∗

cc
• -alpha (scaling factor): 1.2 (as in the original paper)
• -delta (maximum acceptable score): (max(A)-min(A))2/12 * 0.005 (first experiment in the original paper)
• -k (top biclusters having the smallest errors to return): k∗

las • -maxk (maximum number of biclusters to be found): k∗

msbe

• -alpha: 0.3 (original paper, page 54, central value)
• -beta: 0.25 (original paper, page 54, central value)
• -gamma: beta+0.8 (original paper, page 54, central value)
• -bitype: additive
• -nrr (number of reference rows): n
• -nrc (number of reference columns): p

pcluster
• -delta (maximum number of biclusters to be found): 1
• -minr (minimum number of rows): min(nr)
• -minc (minimum number of cols): min(nc)

xmotifs

• -ns (number of seeds): 10 (original paper)
• -nr (number of repetitions): 1000 (original paper)
• -ss (sample size): 5 (implementation’s default value)
• -alpha: 0.05 (implementation’s default value)

fabia

• -n (normalization method): 0.75-0.25 quantile
• -c (data centering): 2
• -alpha (sparseness loadings): 0.01
• -spl (sparseness prior loadings): 0
• -spz (sparseness factors): 0.5
• -k (number of biclusters to be found): k∗

Definitions. min(nr): minimum number of rows that the reference biclusters have (similarly for min(nc)); minr: refer to
the rows of biclusters (similarly for minc); k∗ is the ideal number of biclusters; and min(A): minimum value of the data
matrix (similarly for max(A)).


