APPENDIX

We define here two measures. Let $O \triangleq {\{\tilde{o}_j\}}_{j=1}^n$ be a set of objects, and let P and \dot{P} be two soft clusterings. Let $\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$ be the number of clusters shared by objects \tilde{o}_{j_1} and \tilde{o}_{j_2} in clustering P, and let $\alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$ be similarly defined. The extended bcubed (EBC) measure [33] is based on extended bcubed precision and extended bcubed recall:

$$\mathsf{EBCP}(P, \dot{P}) \triangleq \frac{1}{n} \sum_{j_1=1}^{n} \frac{\sum_{j_2=1}^{n} \min\{\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2}), \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})\}}{\sum_{j_2=1}^{n} \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})}$$
(14a)

$$\text{EBCR}(P, \dot{P}) \triangleq \frac{1}{n} \sum_{j_1=1}^{n} \frac{\sum_{j_2=1}^{n} \min\{\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2}), \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})\}}{\sum_{j_2=1}^{n} \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})}.$$
(14b)

EBC is defined by default as

$$\operatorname{EBC}(P, \dot{P}) \triangleq 2 \cdot \frac{\operatorname{EBCP}(P, \dot{P}) \cdot \operatorname{EBCR}(P, \dot{P})}{\operatorname{EBCP}(P, \dot{P}) + \operatorname{EBCR}(P, \dot{P})}.$$
 (15)

The other measure is defined as follows. Let $\beta_P(\tilde{o}_j)$ be the number of clusters to which object \tilde{o}_j belongs in P minus 1, and let $\beta_{\dot{P}}(\tilde{o}_j)$ be similarly defined. The agreements and disagreements associated with a pair (j_1, j_2) are

$$a_{G}^{P,\dot{P}}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}}) = \min\left\{\alpha_{P}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}}),\alpha_{\dot{P}}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}})\right\} + \sum_{i=1}^{2}\min\left\{\beta_{P}(\tilde{o}_{j_{i}}),\beta_{\dot{P}}(\tilde{o}_{j_{i}})\right\}$$
(16)

and

$$d_{G}^{P,P}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}}) = |\alpha_{P}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}}) - \alpha_{\dot{P}}(\tilde{o}_{j_{1}},\tilde{o}_{j_{2}})| + \sum_{i=1}^{2} |\beta_{P}(\tilde{o}_{j_{i}}) - \beta_{\dot{P}}(\tilde{o}_{j_{i}})|, \qquad (17)$$

respectively. Summing up $a_G^{P,\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$ and $d_G^{P,\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$ over all ordered pairs $(\tilde{o}_{j_1},\tilde{o}_{j_2})$ $(j_1 < j_2)$ results in the following overall measures of agreements $(a_G^{P,\dot{P}})$ and disagreements $(d_G^{P,\dot{P}})$ between P and \dot{P} :

$$a_G^{P,\dot{P}} = \sum_{j_1=1}^{n-1} \sum_{j_2=j_1+1}^n a_G^{P,\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) \text{ and } (18)$$

$$d_G^{P,\dot{P}} = \sum_{j_1=1}^{n-1} \sum_{j_2=j_1+1}^n d_G^{P,\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$$
(19)

The Campello soft index (CSI) [36] is defined by

$$\operatorname{CSI}(P, \dot{P}) \triangleq \frac{a_G^{P, \dot{P}}}{a_G^{P, \dot{P}} + d_G^{P, \dot{P}}}.$$
(20)

We hereafter assume that P, \dot{P} , and \hat{P} are the soft clustering representations of B, \dot{B} , and \hat{B} , respectively.

Proposition 1. There are non-equivalent biclusterings B and \dot{B} such that $P \equiv \dot{P}$.

Proof: Let *B* be a biclustering such that some of the matrix entries are not biclustered, and let \dot{B} be the biclustering *B* with a new bicluster added that has only one entry from the matrix entries not biclustered in *B*. This new bicluster is transformed into a singleton for \dot{P} by Eq. 12, whereas Eq. 13 creates an equivalent singleton for *P*. In other words, the bicluster added in *B* to produce \dot{B} is superfluous from the point of view of our transformation.

Proposition 2. If *B* and \dot{B} are non-equivalent nondegenerate biclusterings, then $P \neq \dot{P}$.

Proof: Let k and q be the number of biclusters in B and \dot{B} , respectively. Suppose that $P \triangleq \{P_i\}_{i=1}^{\overline{k}} \equiv \dot{P} \triangleq \{\dot{P}_i\}_{i=1}^{\overline{q}}$. Thus, $\overline{k} = \overline{q}$ and there is a bijection $\dot{P} \triangleq \{\dot{P}_i\}_{i=1}^{\overline{q}}$. Such that $P_{t_i} \equiv \dot{P}_{y_i}$ for all i. Without loss of generality, suppose that $P_{t_1}, P_{t_2}, \ldots, P_{t_{\underline{k}}}$ (respectively, $\dot{P}_{y_1}, \dot{P}_{y_2}, \ldots, \dot{P}_{y_{\underline{q}}}$) are the non singletons. Clearly, $\underline{k} =$ g = k = q. The bijection $\{(t_i, y_i)\}_{i=1}^{\underline{k}}$ implies that there is a corresponding bijection between B and \dot{B} making $B \equiv \dot{B}$, which contradicts the assumption that $B \neq \dot{B}$.

We will adopt the following notation in several proofs. Let C_1 and C_2 be two sets of objects from $O = {\tilde{o}_j}_{j=1}^n$, and let $f(\cdot, \cdot)$ be a function on $O \times O$. When proving some property of the \mathbb{S}_{csi} measure, $f(C_1, C_2) = x$ means $f(\tilde{o}_{j_1}, \tilde{o}_{j_2}) = x$ for all $\tilde{o}_{j_1} \in C_1$ and $\tilde{o}_{j_2} \in C_2$ such that $j_1 \neq j_2$. When proving some property of the \mathbb{S}_{ebc} measure, $f(C_1, C_2) = x$ means $f(\tilde{o}_{j_1}, \tilde{o}_{j_2}) = x$ for all $\tilde{o}_{j_1} \in C_1$ and $\tilde{o}_{j_2} \in C_2$. In both cases, for a function $f(\cdot)$, $f(C_1) = x$ means $f(\tilde{o}_j) = x$ for all $\tilde{o}_j \in C_1$.

Proposition 3. The \mathbb{S}_{csi} measure is sensitive to the size of spurious biclusters (Def. 1).

Proof: Let B, \hat{B} , and \hat{B} be biclusterings, as in Def. 1, and remember that O is the set of objects. Let $\{P_{t_i}\}_{i=1}^x$ be the set of soft clusters corresponding to the spurious biclusters $\{B_{t_i}\}_{i=1}^x$ in B, and similarly define $\{\hat{P}_{t_i}\}_{i=1}^x$ for \hat{B} . Define $C_s^1 \triangleq \bigcup_{i=1}^x P_{t_i}$ and $C_s^2 \triangleq \bigcup_{i=1}^x \hat{P}_{t_i}$. Note that $C_s^1 \subset C_s^2$. We know that

$$\begin{aligned} \alpha_{\dot{P}}(C_{\rm s}^2,O) &= \beta_{\dot{P}}(C_{\rm s}^2) = 0, \\ \alpha_P(O,O-C_{\rm s}^2) &= \alpha_{\hat{P}}(O,O-C_{\rm s}^2), \\ \beta_P(O-C_{\rm s}^2) &= \beta_{\hat{P}}(O-C_{\rm s}^2), \\ \alpha_P(C_{\rm s}^2,C_{\rm s}^2) &\leq \alpha_{\hat{P}}(C_{\rm s}^2,C_{\rm s}^2), \text{ and } \\ \beta_P(C_{\rm s}^2) &\leq \beta_{\hat{P}}(C_{\rm s}^2). \end{aligned}$$

Thus,

$$a_G^{P,\dot{P}}(C_s^2, O - C_s^2) = \min\{\beta_P(O - C_s^2), \beta_{\dot{P}}(O - C_s^2)\}\$$

= min{ $\beta_{\dot{P}}(O - C_s^2), \beta_{\dot{P}}(O - C_s^2)$ }
= $a_G^{\dot{P},\dot{P}}(C_s^2, O - C_s^2),$

$$\begin{split} a_G^{P,\dot{P}}(C_{\rm s}^2,C_{\rm s}^2) &= 0 = a_G^{\hat{P},\dot{P}}(C_{\rm s}^2,C_{\rm s}^2), \text{ and } \\ a_G^{P,\dot{P}}(O-C_{\rm s}^2,O-C_{\rm s}^2) &= a_G^{\hat{P},\dot{P}}(O-C_{\rm s}^2,O-C_{\rm s}^2). \end{split}$$

Thus, $a_G^{P,\dot{P}}(O,O) = a_G^{\hat{P},\dot{P}}(O,O)$. Observe that

$$\begin{split} d_{G}^{P,\dot{P}}(C_{\rm s}^{2},O-C_{\rm s}^{2}) &= \alpha_{P}(C_{\rm s}^{2},O-C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) \\ &+ |\beta_{P}(O-C_{\rm s}^{2}) - \beta_{\dot{P}}(O-C_{\rm s}^{2})| \\ &= \alpha_{\hat{P}}(C_{\rm s}^{2},O-C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) \\ &+ |\beta_{\hat{P}}(O-C_{\rm s}^{2}) - \beta_{\dot{P}}(O-C_{\rm s}^{2})| \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},O-C_{\rm s}^{2}) + \beta_{\dot{P}}(C_{\rm s}^{2}) \\ &+ |\beta_{\hat{P}}(O-C_{\rm s}^{2}) - \beta_{\dot{P}}(O-C_{\rm s}^{2})| \\ &= d_{G}^{\hat{P},\dot{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) - \beta_{\dot{P}}(O-C_{\rm s}^{2})| \\ &= d_{G}^{\hat{P},\dot{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) + \beta_{P}(C_{\rm s}^{2}) \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) \\ &\leq \alpha_{\hat{P}}(C_{\rm s}^{2},C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) + \beta_{\hat{P}}(C_{\rm s}^{2}) \\ &= d_{G}^{\hat{P},\dot{P}}(O-C_{\rm s}^{2},O-C_{\rm s}^{2}) = d_{G}^{\hat{P},\dot{P}}(O-C_{\rm s}^{2},O-C_{\rm s}^{2}). \end{split}$$

Thus, $d_G^{P,\dot{P}}(O,O) \le d_G^{\dot{P},\dot{P}}(O,O).$

Let P_t be the soft cluster corresponding to a spurious bicluster B_t that was increased, giving rise to \hat{B}_t and \hat{P}_t . Let \tilde{o}_{j_1} and \tilde{o}_{j_2} be two objects from \hat{P}_t such that $\tilde{o}_{j_1} \in P_t$ and $\tilde{o}_{j_2} \notin P_t$. Thus, $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$, $d_G^{P,\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) < d_G^{\dot{P},\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$ (Eq. (21)), and $\text{CSI}(P, \dot{P}) >$ $\text{CSI}(\hat{P}, \dot{P})$.

Proposition 4. The \mathbb{S}_{ebc} measure is sensitive to the size of spurious biclusters (Def. 1).

 \square

Proof: Let B, B, and B be biclusterings, as in Def. 1, and remember that O is the set of objects. Let C_s^1 and C_s^2 be the sets defined in the proof of Proposition 3. Note that

$$\alpha_{P}(C_{s}^{2}, C_{s}^{2}) \geq \alpha_{\dot{P}}(C_{s}^{2}, C_{s}^{2}),$$

$$\alpha_{\hat{P}}(C_{s}^{2}, C_{s}^{2}) \geq \alpha_{\dot{P}}(C_{s}^{2}, C_{s}^{2}), \text{ and }$$

$$\alpha_{P}(O, O - C_{s}^{2}) = \alpha_{\dot{P}}(O, O - C_{s}^{2}).$$

The nominators of Eqs. (14) are equal if one compares Pwith \dot{P} or \hat{P} with \dot{P} . Thus, $\text{EBCR}(P, \dot{P}) = \text{EBCR}(\hat{P}, \dot{P})$. $\text{EBCP}(P, \dot{P}) \geq \text{EBCP}(\hat{P}, \dot{P})$ because $\alpha_{\hat{P}}(O, O) \geq \alpha_{P}(O, O)$.

Let P_t be the soft cluster corresponding to a spurious bicluster B_t that was increased, giving rise to \hat{B}_t and \hat{P}_t . Let \tilde{o}_{j_1} and \tilde{o}_{j_2} be two objects from \hat{P}_t such that $\tilde{o}_{j_1} \in P_t$ and $\tilde{o}_{j_2} \notin P_t$. Thus, $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$, EBCP $(P, \dot{P}) > \text{EBCP}(\hat{P}, \dot{P})$, and EBC $(P, \dot{P}) > \text{EBC}(\hat{P}, \dot{P})$.

Proposition 5. The S_{rnia} and S_{ce} measures penalize solutions that do not cover all reference biclusters (Def. 2).

Proof: Let *B* and *B* be as given in Def. 2. We have $\dot{N}_{j_1,j_2} \ge N_{j_1,j_2}$ for all j_1 and j_2 , and there are j_1 and j_2 such that $N_{j_1,j_2} > N_{j_1,j_2}$ (Eqs. (3) and (4)). Thus, |U| > |I|,

and \mathbb{S}_{rnia} follows the property given by Def. 2. We also have $\mathbb{S}_{\text{rnia}}(B, \dot{B}) \geq \mathbb{S}_{\text{ce}}(B, \dot{B})$ by Proposition 1 in [30]. Thus, \mathbb{S}_{ce} also has the property.

Proposition 6. The \mathbb{S}_{prec} , \mathbb{S}_{u} , and \mathbb{S}_{erec} measures do not always penalize solutions that do not cover all reference biclusters (Def. 2).

Proof: Let *B* and *B* be as given in Def. 2, where $B \triangleq \{B_1\}$ and $\dot{B} \triangleq \{\dot{B}_1, \dot{B}_2\}$ such that $B_1 \equiv \dot{B}_1 \equiv \dot{B}_2$. We would have $\mathbb{S}_{\text{prec}}(B, \dot{B}) = \mathbb{S}_{u}(B, \dot{B}) = \mathbb{S}_{\text{erec}}(B, \dot{B}) = 1$, violating the condition given by Def. 2.

Proposition 7. The \mathbb{S}_{csi} measure penalizes solutions that do not cover all reference biclusters (Def. 2).

Proof: Let *B* and *B* be as given in Def. 2. We have $\alpha_P(j_1, j_2) \leq \alpha_{\dot{P}}(j_1, j_2)$ for all $j_1 \neq j_2$, and the inequality is attained for at least one pair (j_1, j_2) . Thus, $d_G^{P, \dot{P}} > 0$ and $\text{CSI}(P, \dot{P}) < 1$.

Proposition 8. The \mathbb{S}_{ebc} measure penalizes solutions that do not cover all reference biclusters (Def. 2).

Proof: Let *B* and *B* be as given in Def. 2. We have $\alpha_P(j_1, j_2) \leq \alpha_{\dot{P}}(j_1, j_2)$ for all j_1 and j_2 . The inequality is attained for at least one pair (j_1, j_2) , implying that $\text{EBCR}(P, \dot{P}) < 1$ and $\text{EBC}(P, \dot{P}) < 1$.

Proposition 9. The \mathbb{S}_{rnia} measure penalizes solutions for non-intersecting area (Def. 3).

Proof: Let *B*, *B*, and *B* be three biclusterings, as in Def. 3, and let *S* be the set of matrix elements, as in Def. 3. The matrix elements in *S* are those corresponding to j_1 and j_2 such that $\dot{N}_{j_1,j_2} = 0$. We have $N_{j_1,j_2} = \hat{N}_{j_1,j_2}$ for all j_1 and j_2 such that $\dot{N}_{j_1,j_2} > 0$. Thus, $\min\{N_{j_1,j_2}, \dot{N}_{j_1,j_2}\} = \min\{\hat{N}_{j_1,j_2}, \dot{N}_{j_1,j_2}\}$ for all j_1 and j_2 . Since $N_{j_1,j_2} \le \hat{N}_{j_1,j_2}$ for all j_1 and j_2 , we have $\max\{N_{j_1,j_2}, \dot{N}_{j_1,j_2}\} \le \max\{\hat{N}_{j_1,j_2}, \dot{N}_{j_1,j_2}\}$ for all j_1 and j_2 . Therefore, $S_{rnia}(B, \dot{B}) \ge S_{rnia}(\dot{B}, \dot{B})$. Since $N_{j_1,j_2} < \hat{N}_{j_1,j_2}$ for at least a pair (j_1, j_2) such that $\dot{N}_{j_1,j_2} = 0$, we have $\max\{N_{j_1,j_2}, \dot{N}_{j_1,j_2}\} < \max\{\hat{N}_{j_1,j_2}, \dot{N}_{j_1,j_2}\}$ for such a pair and $S_{rnia}(B, B) > S_{rnia}(\dot{B}, \dot{B})$. □

Proposition 10. The \mathbb{S}_{ce} measure penalizes solutions for nonintersecting area (Def. 3).

Proof: Let B, \dot{B} , and \hat{B} be three biclusterings, as in Def. 3. We know from the proof of Proposition 9 that |U| increases from comparing B with \dot{B} to comparing \hat{B} with \dot{B} . On the other hand, d_{\max} (Eq. 6) does not change from comparing B with \dot{B} to comparing \hat{B} with \dot{B} . Thus, $\mathbb{S}_{ce}(B, \dot{B}) > \mathbb{S}_{ce}(\hat{B}, \dot{B})$.

Proposition 11. The \mathbb{S}_{wjac} and \mathbb{S}_{wdic} measures do not always penalize solutions for non-intersecting area (Def. 3).

Proof: Consider a data matrix $A \in \mathbb{R}^{4\cdot 4}$. Let $B \triangleq \{B_1, B_2\}$, $B_1 \triangleq (\{2, 3, 4\}, \{1, 2\})$, $B_2 \triangleq (\{2, 3, 4\}, \{3\})$, $\dot{B} \triangleq \{\dot{B}_1\}$, $\dot{B}_1 \triangleq (\{2, 3, 4\}, \{3, 4\})$, $\dot{B} \triangleq \{\dot{B}_1, \dot{B}_2\}$, $\dot{B}_1 \triangleq (\{2, 3, 4\}, \{3, 4\})$, $\dot{B} \triangleq \{\dot{B}_1, \dot{B}_2\}$, $\dot{B}_1 \triangleq (\{2, 3, 4\}, \{1, 2\})$, and $\dot{B}_2 \triangleq (\{1, 2, 3, 4\}, \{3\})$. Note that B, \dot{B} , and \hat{B} follow the biclustering definitions given in Def.

3. However, $\mathbb{S}_{wjac}(B, \dot{B}) = 0.167 < 0.171 = \mathbb{S}_{wjac}(\hat{B}, \dot{B})$ and $\mathbb{S}_{wdic}(B, \dot{B}) = 0.22 < 0.24 = \mathbb{S}_{wdic}(\hat{B}, \dot{B}).$

Proposition 12. Let B, \dot{B} , and \hat{B} be three biclusterings, as in Def. 3. We have $\mathbb{S}_{csi}(B, \dot{B}) \ge \mathbb{S}_{csi}(\hat{B}, \dot{B})$.

Proof: Let *S* be the set of matrix elements, as in Def. 3. Define *C* as the set of elements from *O* corresponding to the matrix elements in *S*, and let $\overline{C} \triangleq O - C$. We have

$$\begin{split} &\alpha_{P}(\overline{C},\overline{C}) = \alpha_{\hat{P}}(\overline{C},\overline{C}), \\ &\alpha_{P}(C,\overline{C}) \leq \alpha_{\hat{P}}(C,\overline{C}), \\ &\alpha_{P}(C,C) \leq \alpha_{\hat{P}}(C,C), \\ &\alpha_{\hat{P}}(C,\overline{C}) = \alpha_{\hat{P}}(C,C) = 0, \\ &\beta_{P}(\overline{C}) = \beta_{\hat{P}}(\overline{C}), \\ &\beta_{P}(C) \leq \beta_{\hat{P}}(C), \text{ and} \\ &\beta_{\hat{P}}(C) = 0. \end{split}$$

Thus, $a_G^{P,\dot{P}}(\overline{C},\overline{C}) = a_G^{\hat{P},\dot{P}}(\overline{C},\overline{C})$ and $d_G^{P,\dot{P}}(\overline{C},\overline{C}) = d_G^{\hat{P},\dot{P}}(\overline{C},\overline{C})$. We have

$$a_{G}^{P,P}(C,\overline{C}) = \min\{\beta_{P}(\overline{C}), \beta_{\dot{P}}(\overline{C})\} = \min\{\beta_{\hat{P}}(\overline{C}), \beta_{\dot{P}}(\overline{C})\} = a_{G}^{\hat{P},\dot{P}}(C,\overline{C})$$

and

$$d_{G}^{P,P}(C,\overline{C}) = \alpha_{P}(C,\overline{C}) + \beta_{P}(C) + |\beta_{P}(\overline{C}) - \beta_{\dot{P}}(\overline{C})|$$

$$= \alpha_{P}(C,\overline{C}) + \beta_{P}(C) + |\beta_{\dot{P}}(\overline{C}) - \beta_{\dot{P}}(\overline{C})|$$

$$\leq \alpha_{\dot{P}}(C,\overline{C}) + \beta_{\dot{P}}(C) + |\beta_{\dot{P}}(\overline{C}) - \beta_{\dot{P}}(\overline{C})|$$

(22)

$$= d_{C}^{P,P}(C,\overline{C})$$

Note that

$$a_G^{P,\dot{P}}(C,C) = 0 = a_G^{\hat{P},\dot{P}}(C,C)$$

and

$$d_G^{P,\tilde{P}}(C,C) = \alpha_P(C,C) + 2\beta_P(C)$$

$$\leq \alpha_{\hat{P}}(C,C) + 2\beta_{\hat{P}}(C)$$

$$= d_G^{\hat{P},\hat{P}}(C,C).$$
(23)

 $\begin{array}{l} \text{Thus, } a_G^{P, \dot{P}} = a_G^{\dot{P}, \dot{P}}, \, d_G^{P, \dot{P}} \leq d_G^{\dot{P}, \dot{P}}, \, \text{CSI}(P, \dot{P}) \geq \text{CSI}(\dot{P}, \dot{P}), \\ \text{and } \mathbb{S}_{\text{csi}}(B, \dot{B}) \geq \mathbb{S}_{\text{csi}}(\dot{B}, \dot{B}). \end{array} \end{array}$

Proposition 13. The \mathbb{S}_{csi} measure penalizes solutions for non-intersecting area (Def. 3) in the domain of non-degenerate biclusterings.

Proof: Let *B*, *B*, and *B* be three biclusterings, as in Def. 3, with the additional restriction of being nondegenerates. Let *S* be the set of matrix elements, as in Def. 3. Define *C* as the set of elements from *O* corresponding to the matrix elements in *S*. If there are biclusters in \hat{B} originated from the expansion of biclusters in *B*, there is an object $\tilde{o}_j \in C$ that belongs to more clusters in \hat{P} than in *P*, meaning that $\beta_{\hat{P}}(\tilde{o}_j) > \beta_P(\tilde{o}_j)$. If there are new biclusters in \hat{B}_i let \hat{B}_i be one of these. There is a pair $\tilde{o}_{j_1}, \tilde{o}_{j_2} \in C$ $(j_1 \neq j_2)$ that belongs to more clusters in \hat{P} than in P, meaning that $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$. In the first case, $d_G^{\hat{P}, \dot{P}} > d_G^{P, \dot{P}}$ because of Ineq. (22). In the second case, $d_G^{\hat{P}, \dot{P}} > d_G^{P, \dot{P}}$ because of Ineq. (23). Therefore, $\mathrm{CSI}(P, \dot{P}) > \mathrm{CSI}(\hat{P}, \dot{P})$ and $\mathbb{S}_{\mathrm{csi}}(B, \dot{B}) > \mathbb{S}_{\mathrm{csi}}(\hat{B}, \dot{B})$. \Box

Proposition 14. Let B, \dot{B} , and \ddot{B} be three biclusterings, as in Def. 3. We have $\mathbb{S}_{ebc}(B, \dot{B}) \ge \mathbb{S}_{ebc}(\dot{B}, \dot{B})$.

Proof: Let *S* be the set of matrix elements, as in Def. 3. Define *C* as the set of elements from *O* corresponding to the matrix elements in *S*, and let $\overline{C} \triangleq O - C$. We have $\alpha_P(\overline{C}, \overline{C}) = \alpha_{\hat{P}}(\overline{C}, \overline{C}), \ \alpha_{\hat{P}}(C, \overline{C}) = 0, \ \alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) = 0$ for all $\tilde{o}_{j_1}, \tilde{o}_{j_2} \in C$ s.t. $j_1 \neq j_2, \ \alpha_P(\tilde{o}_j, \tilde{o}_j) \ge \alpha_{\hat{P}}(\tilde{o}_j, \tilde{o}_j)$ for all $\tilde{o}_j \in C$, and $\alpha_{\hat{P}}(\tilde{o}_j, \tilde{o}_j) \ge \alpha_{\hat{P}}(\tilde{o}_j, \tilde{o}_j)$ for all $\tilde{o}_j \in C$. Thus, $\min\{\alpha_P(O, O), \alpha_{\hat{P}}(O, O)\} = \min\{\alpha_{\hat{P}}(O, O), \alpha_{\hat{P}}(O, O)\}$. Since

$$\alpha_{\hat{P}}(C,\overline{C}) \ge \alpha_P(C,\overline{C}) \text{ and}$$
 (24)

$$\alpha_{\hat{P}}(C,C) \ge \alpha_P(C,C),\tag{25}$$

we have $\text{EBC}(P, \dot{P}) \geq \text{EBC}(\hat{P}, \dot{P})$ and $\mathbb{S}_{\text{ebc}}(B, \dot{B}) \geq \mathbb{S}_{\text{ebc}}(\hat{B}, \dot{B})$.

Proposition 15. The \mathbb{S}_{ebc} measure penalizes solutions for non-intersecting area (Def. 3) in the domain of non-degenerate biclusterings.

Proof: Let *B*, *B*, and *B* be three biclusterings, as in Def. 3, with the additional restriction of being nondegenerate. Let S be the set of matrix elements, as in Def. 3. Define C as the set of elements from Ocorresponding to the matrix elements in S_{i} and let $\overline{C} \triangleq O - C$. If there are biclusters in \hat{B} originated from the expansion of biclusters in B, there is a pair $\tilde{o}_{j_1}, \tilde{o}_{j_2} \in C$ s.t. $j_1 \neq j_2$ or a pair $\tilde{o}_{j_1} \in C, \tilde{o}_{j_2} \in \overline{C}$ that belongs to more clusters in \hat{P} than in P, meaning that $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$. If there are new biclusters in \hat{B}_i , let \hat{B}_i be one of these. There is a pair $\tilde{o}_{j_1}, \tilde{o}_{j_2} \in C$ s.t. $j_1 \neq j_2$ that belongs to more clusters in P than in *P*, meaning that $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$. In both cases, we can conclude from Ineqs. (24) and (25) that $\operatorname{EBC}(P, \dot{P}) > \operatorname{EBC}(\dot{P}, \dot{P}) \text{ and } \mathbb{S}_{\operatorname{ebc}}(B, \dot{B}) > \mathbb{S}_{\operatorname{ebc}}(\dot{B}, \dot{B}).$ \square

Proposition 16. The \mathbb{S}_{csi} measure penalizes solutions for multiple biclusters coverage (Def. 4).

Proof: Let *B* and *B* be two biclusterings, as in Def. 4. We have $\alpha_P(O, O) \ge \alpha_{\dot{P}}(O, O)$ and $\beta_P(O) = \beta_{\dot{P}}(O) = 0$. There are \tilde{o}_{j_1} and \tilde{o}_{j_2} s.t. $j_1 \ne j_2$ such that $\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$, implying that $d_G^{P, \dot{P}} > 0$, $\text{CSI}(P, \dot{P}) < 1$, and $\mathbb{S}_{\text{csi}}(B, \dot{B}) < 1$.

Proposition 17. The \mathbb{S}_{ebc} measure penalizes solutions for multiple biclusters coverage (Def. 4).

Proof: Let *B* and *B* be two biclusterings, as in Def. 4. Note that $\alpha_P(O, O) \ge \alpha_{\dot{P}}(O, O)$. There are \tilde{o}_{j_1} and \tilde{o}_{j_2} s.t. $j_1 \ne j_2$ such that $\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$, implying that EBCP $(P, \dot{P}) < 1$, EBC $(P, \dot{P}) < 1$, and $\mathbb{S}_{ebc}(B, \dot{B}) < 0$ 1.

Proposition 18. The \mathbb{S}_{prel} , \mathbb{S}_{prec} , and $\mathbb{S}_{l\&w}$ measures penalize solutions for multiple biclusters coverage (Def. 4).

Proof: Let *B* and *B* be two biclusterings, as in Def. 4. Since the biclusters in *B* do not overlap, we have the proper subset relationships $\dot{B}_i^r \subset B_1^r$ for all *i* or $\dot{B}_i^c \subset B_1^c$ for all *i*. Thus, $|B_1^r \cup \dot{B}_i^r| > |B_1^r \cap \dot{B}_i^r|$ for all *i* or $|B_1^c \cup \dot{B}_i^c| > |B_1^c \cap \dot{B}_i^c|$ for all *i*. We have $S_r(B,\dot{B}) < 1$ or $S_c(B,\dot{B}) < 1$ (Eqs. (1) and (2)), implying that $\mathbb{S}_{\text{prec}}(B,\dot{B}) < 1$. \Box

Proposition 19. The S_{stm} , S_{wjac} , S_{wdic} , S_{ay} , S_{erel} , and S_{erec} measures penalize solutions for multiple biclusters coverage (Def. 4).

Proof: Let *B* and *B* be two biclusterings, as in Def. 4. Since the biclusters in *B* do not overlap, we have the proper subset relationship $\dot{B}_i^{\rm r} \times \dot{B}_i^{\rm c} \subset B_1^{\rm r} \times B_1^{\rm c}$ for all *i*. Thus, $\mathbb{D}(B_1, \dot{B}_i) < 1$ and $\mathbb{J}(B_1, \dot{B}_i) < 1$ for all *i*, implying that $\mathbb{S}_{\rm stm}(B, \dot{B}) < 1$, $\mathbb{S}_{\rm wjac}(B, \dot{B}) < 1$, $\mathbb{S}_{\rm wdic}(B, \dot{B}) < 1$, $\mathbb{S}_{\rm erel}(B, \dot{B}) < 1$, and $\mathbb{S}_{\rm erec}(B, \dot{B}) < 1$. From $\mathbb{S}_{\rm ay}(B, \dot{B}) < \mathbb{S}_{\rm erel}(B, \dot{B})$, we also have $\mathbb{S}_{\rm ay}(B, \dot{B}) < 1$. □

Proposition 20. The S_{csi} measure penalizes solutions with repetitive biclusters (Def. 5).

Proof: Let B, \dot{B} , and \dot{B} be biclusterings, as in Def. 5. Let C_r be the set of objects from O corresponding to the matrix entries of the biclusters in B that were replicated. We have

$$\alpha_P(O, O - C_r) = \alpha_{\hat{P}}(O, O - C_r),$$
 (26)

$$\alpha_{\hat{P}}(C_{\mathrm{r}}, C_{\mathrm{r}}) > \alpha_{P}(C_{\mathrm{r}}, C_{\mathrm{r}}) \ge \alpha_{\hat{P}}(C_{\mathrm{r}}, C_{\mathrm{r}}), \qquad (27)$$

$$\beta_P(O - C_{\mathbf{r}}) = \beta_{\hat{P}}(O - C_{\mathbf{r}}), \text{ and} \beta_{\hat{P}}(C_{\mathbf{r}}) > \beta_P(C_{\mathbf{r}}) \ge \beta_{\hat{P}}(C_{\mathbf{r}}).$$

We conclude that $a_G^{P,\dot{P}}(O,O) = a_G^{\hat{P},\dot{P}}(O,O)$ and $a_G^{P,\dot{P}} = a_G^{\hat{P},\dot{P}}$.

We have

$$\begin{split} d_{G}^{P,\dot{P}}(O,O-C_{\rm r}) &= |\alpha_{P}(O,O-C_{\rm r}) - \alpha_{\dot{P}}(O,O-C_{\rm r})| \\ &+ |\beta_{P}(O) - \beta_{\dot{P}}(O)| \\ &+ |\beta_{P}(O-C_{\rm r}) - \beta_{\dot{P}}(O-C_{\rm r})| \\ &= |\alpha_{\dot{P}}(O,O-C_{\rm r}) - \alpha_{\dot{P}}(O,O-C_{\rm r})| \\ &+ |\beta_{P}(O) - \beta_{\dot{P}}(O)| \\ &+ |\beta_{\dot{P}}(O-C_{\rm r}) - \beta_{\dot{P}}(O-C_{\rm r})| \\ &\leq d_{G}^{\hat{P},\dot{P}}(O,O-C_{\rm r}) \end{split}$$

and

$$\begin{aligned} d_G^{P,\dot{P}}(C_{\mathbf{r}},C_{\mathbf{r}}) &= |\alpha_P(C_{\mathbf{r}},C_{\mathbf{r}}) - \alpha_{\dot{P}}(C_{\mathbf{r}},C_{\mathbf{r}})| \\ &+ 2|\beta_P(C_{\mathbf{r}}) - \beta_{\dot{P}}(C_{\mathbf{r}})| \\ &< |\alpha_{\hat{P}}(C_{\mathbf{r}},C_{\mathbf{r}}) - \alpha_{\dot{P}}(C_{\mathbf{r}},C_{\mathbf{r}})| \\ &+ 2|\beta_{\hat{P}}(C_{\mathbf{r}}) - \beta_{\dot{P}}(C_{\mathbf{r}})| \\ &= d_G^{\hat{P},\dot{P}}(C_{\mathbf{r}},C_{\mathbf{r}}) \end{aligned}$$

Thus,
$$d_G^{\hat{P},\hat{P}} > d_G^{\hat{P},\hat{P}}$$
, $\operatorname{CSI}(P,\dot{P}) > \operatorname{CSI}(\hat{P},\dot{P})$, and $\mathbb{S}_{\operatorname{csi}}(B,\dot{B}) > \mathbb{S}_{\operatorname{csi}}(\hat{B},\dot{B})$.

Proposition 21. The \mathbb{S}_{ebc} measure penalizes solutions with repetitive biclusters (Def. 5).

Proof: Let *B*, *B*, and *B* be biclusterings, as in Def. 5. Let C_r be the set of objects from *O* corresponding to the matrix entries of the biclusters in *B* that were replicated. We know from Eqs. (26) and (27) that the nominators of Eqs. (14) do not change from comparing *P* with \dot{P} to comparing \hat{P} with \dot{P} , and that $\alpha_{\hat{P}}(O,O) \geq \alpha_P(O,O)$. We have \tilde{o}_{j_1} and \tilde{o}_{j_2} (for which $j_1 = j_2$ is allowed) such that $\alpha_{\hat{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2}) > \alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2})$. Therefore, EBCP $(P, \dot{P}) >$ EBCP (\hat{P}, \dot{P}) , EBC $(P, \dot{P}) >$ EBC (\hat{P}, \dot{P}) , and $\mathbb{S}_{ebc}(B, \dot{B})$.

Proposition 22. The \mathbb{S}_{prec} and \mathbb{S}_{erec} measures do not have the homogeneity property (Def. 7).

Proof: Consider the non-overlapping biclusterings B and \hat{B} represented by Figs. 13b and 13c and the reference solution \dot{B} represented by Fig. 13a. We have $\mathbb{S}_{\text{prec}}(B, \dot{B}) = \mathbb{S}_{\text{prec}}(\hat{B}, \dot{B}) = 0.74$ and $\mathbb{S}_{\text{erec}}(B, \dot{B}) = \mathbb{S}_{\text{erec}}(\hat{B}, \dot{B}) = 0.55$.

Proposition 23. The \mathbb{S}_{csi} measure has the homogeneity property (Def. 7).

Proof: Let B, \hat{B} , and \hat{B} be three biclusterings, as in Def. 7. Let C_s^1 be the x objects swapped from P_{i_1} , C_n^1 be the objects from the minor category in P_{i_1} that were not swapped, and C_r^1 be the objects from the main category in P_{i_1} . Analogously, define C_s^2 , C_n^2 , and C_r^2 . Since B, \hat{B} , and \dot{B} are non-overlapping solutions, we have $\beta_P(O) = \beta_{\hat{P}}(O) = \beta_{\hat{P}}(O) = 0$. Thus, the eventual difference between $a_G^{P,\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$ (respectively, $d_G^{P,\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$) and $a_G^{\hat{P},\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$ ($d_G^{\hat{P},\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$) can only be due to the eventual difference between $\alpha_P(\tilde{o}_{j_1},\tilde{o}_{j_2})$ and $\alpha_{\hat{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})$ (see Eqs. (16) and (17)).

We conclude from Table 12 that $a_G^{P,\dot{P}} = a_G^{\hat{P},\dot{P}} + |C_s^1||C_n^1| + |C_s^2||C_n^2| = a_G^{\hat{P},\dot{P}} + x(|C_n^1| + |C_n^2|)$, where $x = |C_s^1| = |C_s^2|$, as in Def. 7. Table 13 shows the differences in

TABLE 12: Differences in $a_G^{\cdot,\cdot}(\cdot, \cdot)$ by changing P to \hat{P} .

 $\begin{aligned} d_{G}^{\gamma}(\cdot,\cdot), \text{ implying that } d_{G}^{P,\dot{P}} &= d_{G}^{\hat{P},\dot{P}} - |C_{s}^{1}||C_{n}^{1}| - |C_{s}^{2}||C_{n}^{2}| - |C_{s}^{1}||C_{n}^{2}| - |C_{s}^{2}||C_{n}^{2}| - |C_{s}^{1}||C_{s}^{2}| - |C_{s}^{1}||C_{s}^{2}| + |C_{s}^{1}||C_{r}^{1}| + |C_{s}^{2}||C_{r}^{2}| = d_{G}^{\hat{P},\dot{P}} - 2x(|C_{n}^{1}| + |C_{n}^{2}|). \text{ Thus,} \end{aligned}$

$$\operatorname{CSI}(\hat{P}, \dot{P}) = \frac{a_G^{1,2} - x(|C_n^1| + |C_n^2|)}{a_G^{P,\dot{P}} + d_G^{P,\dot{P}} + x(|C_n^1| + |C_n^2|)}$$

and $\mathbb{S}_{csi}(B, \dot{B}) \ge \mathbb{S}_{csi}(\hat{B}, \dot{B}).$

TABLE 13: Differences in $d_G^{r,\cdot}(\cdot, \cdot)$ by changing P to \hat{P} .

$d_G^{P,\dot{P}}(C_{\rm s}^1,C_{\rm n}^1) = 1-1 < 0-1 = d_G^{\dot{P},\dot{P}}(C_{\rm s}^1,C_{\rm n}^1)$
$d_G^{P,\dot{P}}(C_{\rm s}^2,C_{\rm n}^2) = 1-1 < 0-1 = d_G^{\hat{P},\dot{P}}(C_{\rm s}^2,C_{\rm n}^2)$
$d_G^{P,\dot{P}}(C_{\rm s}^1,C_{\rm r}^1) = 1-0 > 0-0 = d_G^{\hat{P},\dot{P}}(C_{\rm s}^1,C_{\rm r}^1)$
$d_G^{P,\dot{P}}(C_{\rm s}^2,C_{\rm r}^2) = 1-0 > 0-0 = d_G^{\hat{P},\dot{P}}(C_{\rm s}^2,C_{\rm r}^2)$
$d_G^{P,\dot{P}}(C_{\rm s}^1,C_{\rm n}^2) = 0-0 < 1-0 = d_G^{\hat{P},\dot{P}}(C_{\rm s}^1,C_{\rm n}^2)$
$d_G^{P,\dot{P}}(C_{\rm n}^1,C_{\rm s}^2) = 0-0 < 1-0 = d_G^{\hat{P},\dot{P}}(C_{\rm n}^1,C_{\rm s}^2)$
$d_G^{P,\dot{P}}(C_{\rm s}^1,C_{\rm r}^2) = 0-0 < 1-0 = d_G^{\hat{P},\dot{P}}(C_{\rm s}^1,C_{\rm r}^2)$
$d_G^{P,\dot{P}}(C_{\rm r}^1,C_{\rm s}^2) = 0-0 < 1-0 = d_G^{\hat{P},\dot{P}}(C_{\rm r}^1,C_{\rm s}^2)$

If $x = |I(B_{i_1}, \dot{B}_{mi(i_1)})| = |I(B_{i_2}, \dot{B}_{mi(i_2)})|$, then $|C_n^1| = |C_n^2| = 0$ and $\mathbb{S}_{csi}(B, \dot{B}) = \mathbb{S}_{csi}(\hat{B}, \dot{B})$. If $\mathbb{S}_{csi}(B, \dot{B}) = \mathbb{S}_{csi}(\hat{B}, \dot{B})$, then $|C_n^1| + |C_n^2| = 0$ (because x > 0, Def. 7) and $x = |I(B_{i_1}, \dot{B}_{mi(i_1)})| = |I(B_{i_2}, \dot{B}_{mi(i_2)})|$.

Proposition 24. The \mathbb{S}_{ebc} measure has the homogeneity property (Def. 7).

Proof: Let B, \hat{B} , and \hat{B} be three biclusterings, as in Def. 7. Let C_s^1 be the x objects swapped from P_{i_1} , C_n^1 be the objects from the minor category in P_{i_1} that were not swapped, and C_r^1 be the objects from the main category in P_{i_1} . Analogously, define C_s^2 , C_n^2 , and C_r^2 . Let

$$\delta_{\mathbf{p}}^{P,\dot{P}}(\tilde{o}_{j_{1}}) \triangleq \frac{\sum_{j_{2}=1}^{n} \min\{\alpha_{P}(\tilde{o}_{j_{1}}, \tilde{o}_{j_{2}}), \alpha_{\dot{P}}(\tilde{o}_{j_{1}}, \tilde{o}_{j_{2}})\}}{\sum_{j_{2}=1}^{n} \alpha_{P}(\tilde{o}_{j_{1}}, \tilde{o}_{j_{2}})}$$

such that EBCP $(P, \dot{P}) = (1/n) \sum_{j_1=1}^n \delta_{\mathbf{p}}^{P, \dot{P}}(\tilde{o}_{j_1})$. Note that

$$\sum_{\tilde{o}_{j_1} \notin P_{i_1} \cup P_{i_2}} \delta_{\mathbf{p}}^{P, \dot{P}}(\tilde{o}_{j_1}) = \sum_{\tilde{o}_{j_1} \notin P_{i_1} \cup P_{i_2}} \delta_{\mathbf{p}}^{\hat{P}, \dot{P}}(\tilde{o}_{j_1}).$$

TABLE 14: Differences in $\delta_{p}^{\cdot,\cdot}(\cdot)$ by changing *P* to \hat{P} .

We conclude from Table 14 and after some algebraic manipulation that

$$\sum_{\tilde{o}_{j_1} \in P_{i_1} \cup P_{i_2}} \delta_{\mathbf{p}}^{P,\dot{P}}(\tilde{o}_{j_1}) = \frac{(|C_{\mathbf{s}}^1| + |C_{\mathbf{n}}^1|)^2}{|P_{i_1}|} + \frac{|C_{\mathbf{r}}^1|^2}{|P_{i_1}|} + \frac{(|C_{\mathbf{s}}^2| + |C_{\mathbf{n}}^2|)^2}{|P_{i_2}|} + \frac{(|C_{\mathbf{r}}^2|^2}{|P_{i_2}|}$$

and

$$\sum_{\tilde{o}_{j_1} \in P_{i_1} \cup P_{i_2}} \delta_{\mathbf{p}}^{\hat{P}, \dot{P}}(\tilde{o}_{j_1}) = \frac{|C_{\mathbf{s}}^2|^2 + |C_{\mathbf{n}}^1|^2 + |C_{\mathbf{r}}^1|^2}{|P_{i_1}|} + \frac{|C_{\mathbf{s}}^1|^2 + |C_{\mathbf{n}}^2|^2 + |C_{\mathbf{r}}^2|^2}{|P_{i_2}|}$$

From $x = |C_{s}^{1}| = |C_{s}^{2}|$, we have

$$\text{EBCP}(\hat{P}, \dot{P}) - \text{EBCP}(P, \dot{P}) = \frac{-2x}{n} \left(\frac{|C_{n}^{1}|}{|P_{i_{1}}|} + \frac{|C_{n}^{2}|}{|P_{i_{2}}|} \right).$$
(28)

Let

$$\delta_{\mathbf{r}}^{P,\dot{P}}(\tilde{o}_{j_1}) \triangleq \frac{\sum_{j_2=1}^n \min\{\alpha_P(\tilde{o}_{j_1},\tilde{o}_{j_2}), \alpha_{\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})\}}{\sum_{j_2=1}^n \alpha_{\dot{P}}(\tilde{o}_{j_1},\tilde{o}_{j_2})}$$

such that $\text{EBCR}(P, \dot{P}) = (1/n) \sum_{j_1=1}^n \delta_r^{P, \dot{P}}(\tilde{o}_{j_1})$. The only difference between $\delta_p^{P, \dot{P}}(\tilde{o}_{j_1})$ and $\delta_r^{P, \dot{P}}(\tilde{o}_{j_1})$ lies in the denominators. Thus,

$$\sum_{\tilde{o}_{j_1} \in P_{i_1} \cup P_{i_2}} \delta_{\mathbf{r}}^{\mathbf{P}, \dot{\mathbf{P}}}(\tilde{o}_{j_1}) = \frac{(|C_{\mathbf{s}}^1| + |C_{\mathbf{n}}^1|)^2}{|\dot{P}_{\mathrm{mi}(i_1)}|} + \frac{(|C_{\mathbf{s}}^2| + |C_{\mathbf{n}}^2|)^2}{|\dot{P}_{\mathrm{mi}(i_2)}|} \\ + \frac{|C_{\mathbf{r}}^1|^2}{|\dot{P}_{\mathrm{ma}(i_1)}|} + \frac{|C_{\mathbf{r}}^2|^2}{|\dot{P}_{\mathrm{ma}(i_2)}|}$$

and

$$\sum_{\tilde{p}_{j_1} \in P_{i_1} \cup P_{i_2}} \delta_{\mathbf{r}}^{\hat{P}, \dot{P}}(\tilde{o}_{j_1}) = \frac{|C_{\mathbf{s}}^1|^2 + |C_{\mathbf{n}}^1|^2}{|\dot{P}_{\mathrm{mi}(i_1)}|} + \frac{|C_{\mathbf{s}}^2|^2 + |C_{\mathbf{n}}^2|^2}{|\dot{P}_{\mathrm{mi}(i_2)}|} + \frac{|C_{\mathbf{r}}^1|^2}{|\dot{P}_{\mathrm{mi}(i_2)}|} + \frac{|C_{\mathbf{r}}^2|^2}{|\dot{P}_{\mathrm{ma}(i_1)}|} + \frac{|C_{\mathbf{r}}^2|^2}{|\dot{P}_{\mathrm{ma}(i_2)}|}.$$

Therefore,

$$\operatorname{EBCR}(\hat{P}, \dot{P}) - \operatorname{EBCR}(P, \dot{P}) = \frac{-2x}{n} \Big(\frac{|C_{n}^{1}|}{|\dot{P}_{\operatorname{mi}(i_{1})}|} + \frac{|C_{n}^{2}|}{|\dot{P}_{\operatorname{mi}(i_{2})}|} \Big).$$
(29)

We conclude from (28) and (29) that $\text{EBC}(P, \dot{P}) \ge \text{EBC}(\hat{P}, \dot{P})$ and $\mathbb{S}_{\text{ebc}}(B, \dot{B}) \ge \mathbb{S}_{\text{ebc}}(\hat{B}, \dot{B})$. If $x = |I(B_{i_1}, \dot{B}_{\text{mi}(i_1)})| = |I(B_{i_2}, \dot{B}_{\text{mi}(i_2)})|$, then $|C_n^1| = |C_n^2| = 0$ and $\mathbb{S}_{\text{ebc}}(B, \dot{B}) = \mathbb{S}_{\text{ebc}}(\hat{B}, \dot{B})$. If $\mathbb{S}_{\text{ebc}}(B, \dot{B}) = \mathbb{S}_{\text{ebc}}(\hat{B}, \dot{B})$, then $|C_n^1| = |C_n^2| = 0$ (because x > 0, Def. 7) and $x = |I(B_{i_1}, \dot{B}_{\text{mi}(i_1)})| = |I(B_{i_2}, \dot{B}_{\text{mi}(i_2)})|$.

Proposition 25. We have $\mathbb{S}_{ce}(B, \dot{B}) = 1$ iff $B \equiv \dot{B}$.

Proof: Clearly, $B \equiv \dot{B}$ implies that $\mathbb{S}_{ce} = 1$. Let k be the number of biclusters in B and q the number of biclusters in \dot{B} . Suppose that $\mathbb{S}_{ce}(B, \dot{B}) = 1$, and let $\{(t_i, y_i)\}_{i=1}^{\min\{k,q\}}$ be the unique relation that maximizes Eq. (6). Note that $|U| \ge \sum_{j_1, j_2} N_{j_1, j_2} = \sum_{i=1}^k |B_i^r \times B_i^c| \ge d_{\max}$ and $|U| \ge \sum_{j_1, j_2} N_{j_1, j_2} = \sum_{i=1}^q |\dot{B}_i^r \times \dot{B}_i^c| \ge d_{\max}$. We have from $|U| = d_{\max}$ that $\sum_{i=1}^k |B_i^r \times B_i^c| = d_{\max} \le \sum_{i=1}^{\min\{k,q\}} |B_{t_i}^r \times B_{t_i}^c| \le \sum_{i=1}^k |B_i^r \times B_i^c|$, implying that $\sum_{i=1}^k |B_i^r \times B_i^c| = \sum_{i=1}^{\min\{k,q\}} |B_{t_i}^r \times \dot{B}_i^c| = \sum_{i=1}^{\min\{k,q\}} |\dot{B}_{i}^r \times \dot{B}_{i_i}^c|$ and $k = \min\{k,q\}$. Similarly, $\sum_{i=1}^q |\dot{B}_i^r \times \dot{B}_i^c| = \sum_{i=1}^{\min\{k,q\}} |\dot{B}_{y_i}^r \times \dot{B}_{y_i}^c|$ and $q = \min\{k,q\}$. Thus, k = q. From $d_{\max} = \sum_{i=1}^{\min\{k,q\}} |B_{t_i}^r \times B_{t_i}^c|$ we have $B_{t_i}^r \times B_{t_i}^c \subseteq \dot{B}_{y_i}^r \times \dot{B}_{y_i}^c$ for all i. Similarly, $\dot{B}_{y_i}^r \times \dot{B}_{y_i}^c \subseteq B_{t_i}^r \times B_{t_i}^c$ for all i, and then $B_{t_i}^r \times B_{t_i}^c = \dot{B}_{y_i}^r \times \dot{B}_{y_i}^c$ for all i. Thus, $B \equiv \dot{B}$.

Proposition 26. We have $\mathbb{S}_{\text{fabi}}(B, \dot{B}) = 1$ iff $B \equiv \dot{B}$.

Proof: Clearly, $B \equiv \dot{B}$ implies that $\mathbb{S}_{\text{fabi}} = 1$. Suppose that $\mathbb{S}_{\text{fabi}}(B, \dot{B}) = 1$, and let $\{(t_i, y_i)\}_{i=1}^{\min\{k,q\}}$ be the optimal unique relation required by \mathbb{S}_{fabi} . The denominator of Eq. (9) shows that \mathbb{S}_{fabi} attains 1 only when comparing solutions with the same number of biclusters, which makes $\{(t_i, y_i)\}_{i=1}^{\min\{k,q\}}$ a bijection. \mathbb{S}_{fabi} attains 1 only if $\mathbb{J}(B_{t_i}, \dot{B}_{y_i}) = 1$ for all i, and $\mathbb{J}(B_{t_i}, \dot{B}_{y_i})$ attains 1 only if $B_{t_i} \equiv \dot{B}_{y_i}$. Thus, $B \equiv \dot{B}$.

Proposition 27. There are two non-equivalent biclusterings *B* and \dot{B} such that $\mathbb{S}_{csi}(B, \dot{B}) = \mathbb{S}_{ebc}(B, \dot{B}) = 1$.

Proof: Let *B* be a biclustering in which one or more matrix elements were not biclustered. Then add one bicluster in *B* that has only one of the matrix elements that were not biclustered, and let \dot{B} be the resulting solution. Applying the transformation approach given in Section 5 to *B* and \dot{B} , we have two equivalent soft clusterings *P* and \dot{P} , implying that CSI(*P*, \dot{P}) = EBC(*P*, \dot{P}) = 1 and $\mathbb{S}_{csi}(B,\dot{B}) = \mathbb{S}_{ebc}(B,\dot{B}) = 1$.

Proposition 28. There are two non-equivalent nondegenerate biclusterings B and \dot{B} for which $\mathbb{S}_{csi}(B, \dot{B}) = \mathbb{S}_{ebc}(B, \dot{B}) = 1$.

Proof: The biclusterings in Fig. 14 are given by $B \triangleq \{B_i\}_{i=1}^4$, $\dot{B} \triangleq \{\dot{B}_i\}_{i=1}^3$, $B_1 \triangleq (\{1\}, \{1, 2\})$, $B_2 \triangleq (\{2\}, \{1, 2\})$, $B_3 \triangleq (\{3\}, \{1, 2\})$, $B_4 \triangleq (\{1, 2, 3\}, \{1, 2\})$,

 $\dot{B}_{1} \triangleq (\{1,2\},\{1,2\}), \ \dot{B}_{2} \triangleq (\{2,3\},\{1,2\}), \text{ and } \dot{B}_{3} \triangleq (\{1,3\},\{1,2\}). \text{ We have } P = \{P_{i}\}_{i=1}^{4} \text{ and } \dot{P} = \{\dot{P}_{i}\}_{i=1}^{3}, \text{ where } P_{1} = \{\tilde{o}_{1},\tilde{o}_{4}\}, \ P_{2} = \{\tilde{o}_{2},\tilde{o}_{5}\}, \ P_{3} = \{\tilde{o}_{3},\tilde{o}_{6}\}, P_{4} = \{\tilde{o}_{j}\}_{j=1}^{6}, \dot{P}_{1} = \{\tilde{o}_{1},\tilde{o}_{2},\tilde{o}_{4},\tilde{o}_{5}\}, \ \dot{P}_{2} = \{\tilde{o}_{2},\tilde{o}_{3},\tilde{o}_{5},\tilde{o}_{6}\}, \text{ and } \dot{P}_{3} = \{\tilde{o}_{1},\tilde{o}_{3},\tilde{o}_{4},\tilde{o}_{6}\}.$

Note that $\alpha_P(\tilde{o}_{j_1}, \tilde{o}_{j_2}) = \alpha_{\dot{P}}(\tilde{o}_{j_1}, \tilde{o}_{j_2})$ for all j_1 and j_2 , and we have $\beta_P(\tilde{o}_j) = \beta_{\dot{P}}(\tilde{o}_j)$ for all j. Thus, $d_G^{P, \dot{P}} = 0$, $\text{CSI}(P, \dot{P}) = 1$, and $\mathbb{S}_{\text{csi}}(B, \dot{B}) = 1$. Similarly, $\mathbb{S}_{\text{ebc}}(B, \dot{B}) = 1$.

Fig. 14: Indistinguishable biclusterings for $\mathbb{S}_{\rm csi}$ and $\mathbb{S}_{\rm ebc}.$

Since $P \neq \dot{P}$, the above proof contradicts Proposition 1 in [36], which states (in terms of matrices) that $CSI(P, \dot{P}) = 1$ iff $P \equiv \dot{P}$.

Algorithm	Implementation	Source	Reference
bbc	С	http://www.people.fas.harvard.edu/~junliu/BBC/	[16]
bcca	Matlab	http://sn.im/26fzpck	[57]
bibit	Java	http://www.upo.es/eps/bigs/BiBit_algorithm.html	[55]
bimax	R biclust package	http://cran.r-project.org/web/packages/biclust/index.html	[8]
сс	R biclust package	http://cran.r-project.org/web/packages/biclust/index.html	[4]
las	Matlab	https://genome.unc.edu/las/	[58]
msbe	Java	http://www.cs.cityu.edu.hk/~lwang/software/msbe/help.html	[39]
pcluster	Windows binary	http://haixun.olidu.com/proj/delta.html	[54]
xmotifs	R biclust package	http://cran.r-project.org/web/packages/biclust/index.html	[56]
fabia	R fabia package	http://www.bioconductor.org/packages/2.12/bioc/html/fabia.html	[37]

TABLE 15: Biclustering	algorithms	used in	the experiment	ments.
------------------------	------------	---------	----------------	--------

TABLE 16: Algorithm configuration.

Algorithm	Configuration
bbc	-k (number of biclusters to be found): k*
	 -n (normalization method): zero-mean, unit-variance column normalization
1	• -minc (minimum number of columns): min(nc)
bcca	• -maxk (maximum number of biclusters to be found): κ • -theta (Pearson correlation threshold): 0.90
1.11.1.	 - minr (minimum number of rows): min(nr)
bibit	• -minc (minimum number of cols): min(nc)
	 -minr (minimum number of rows): min(nr)
bimax	• -minc (minimum number of cols): min(nc)
	• -K (number of biclusters to be found): k'
66	• -alpha (scaling factor): 1.2 (as in the original paper) • -delta (maximum acceptable score): $(max(A)-min(A))^2/12 * 0.005$ (first experiment in the original paper)
ee	 -k (top biclusters having the smallest errors to return): k*
las	• -maxk (maximum number of biclusters to be found): k^*
	 -alpha: 0.3 (original paper, page 54, central value)
	• -beta: 0.25 (original paper, page 54, central value)
msbe	• -bitype: additive
	• -nrr (number of reference rows): n
	 -nrc (number of reference columns): p
	 -delta (maximum number of biclusters to be found): 1
pcluster	• -minr (minimum number of rows): min(nr)
	• -mile (number of code): 10 (original paper)
	 -Ins (number of seeds). 10 (original paper) -nr (number of repetitions): 1000 (original paper)
xmotifs	• -ss (sample size): 5 (implementation's default value)
	 -alpha: 0.05 (implementation's default value)
	• -n (normalization method): 0.75-0.25 quantile
fabia	 -C (data centering): 2 -alpha (sparseness loadings): 0.01
	 -spl (sparseness prior loadings): 0
	• -spz (sparseness factors): 0.5
	• -k (number of biclusters to be found): k*

Definitions. min(nr): minimum number of rows that the reference biclusters have (similarly for min(nc)); minr: refer to the rows of biclusters (similarly for minc); k^* is the ideal number of biclusters; and min(A): minimum value of the data matrix (similarly for max(A)).