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Similarity Measures for Comparing Biclusterings
Danilo Horta, Ricardo J. G. B. Campello

Abstract—The comparison of ordinary partitions of a set of objects is well established in the clustering literature, which comprehends
several studies on the analysis of the properties of similarity measures for comparing partitions. However, similarity measures for
clusterings are not readily applicable to biclusterings, since each bicluster is a tuple of two sets (of rows and columns), whereas a cluster
is only a single set (of rows). Some biclustering similarity measures have been defined as minor contributions in papers which primarily
report on proposals and evaluation of biclustering algorithms or comparative analyses of biclustering algorithms. The consequence is
that some desirable properties of such measures have been overlooked in the literature. We review 14 biclustering similarity measures.
We define eight desirable properties of a biclustering measure, discuss their importance, and prove which properties each of the
reviewed measures has. We show examples drawn and inspired from important studies in which several biclustering measures convey
misleading evaluations due to the absence of one or more of the discussed properties. We also advocate the use of a more general
comparison approach that is based on the idea of transforming the original problem of comparing biclusterings into an equivalent
problem of comparing clustering partitions with overlapping clusters.

Index Terms—Biclustering similarity measure, Gene expression, External evaluation, Validity index

✦

1 INTRODUCTION
Gene expression data are the product of microarray
experiments, in which the expression levels of typically
thousands of genes are recorded under varying condi-
tions (e.g., organ tissues, blood samples, and phases of
cell cycle) [1]. These data are usually represented by
a data matrix A ∈ Rn·p, where rows represent genes
and columns represent conditions. Hartigan [2] first pre-
sented algorithms capable of simultaneously clustering
both rows and columns of a data matrix. Later, Mirkin
[3] defined this new type of data clustering as biclus-
tering (also called co-clustering or two-mode/two-way
clustering). However, this type of clustering algorithm
started to draw the scientific community’s attention only
after the work of Cheng and Church [4]. The biclustering
paradigm has become popular in the gene expression
field, as a set of genes will rarely be similar to each other
under all investigated conditions, and vice versa [4], [5],
[6], [7], [8], [9], [10]. To a lesser degree, the biclustering
approach has also gained attention in the text, web-log,
and market-basket analysis fields [11]. In text analysis,
for example, one may wish to find similar documents
and their interplay with word clusters.
Since 2000, researchers have developed dozens of bi-

clustering algorithms (surveys in [6], [9], [12], [13]) for
gene expression. The proposition of a new algorithm
is usually accompanied by a comparative study that
includes other biclustering algorithms. Four approaches
have been used to evaluate the efficacy of the proposed
algorithms in these experiments. The first depends on
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biological analyses and interpretations by human experts
[8], who rely on visualization methods (e.g., parallel
coordinate plots and heat maps of the data matrix) and
previous knowledge about genes and conditions [14],
[15], [16], [17], [18]. This method is frequently accom-
panied by other approaches due to its subjective nature
and is impractical when several algorithms are compared
[8].
A more objective and popular approach consists in

comparing solutions by their biological significance [13],
[19], [20]. For example, one can apply the algorithms to
real data sets whose genes are annotated in the Gene
Ontology database [21] and then perform an enrich-
ment analysis, which will provide p-values indicating
the degree of randomness of the biclusters found. Such
an analysis is appealing, but it does not consider the
clustered columns (conditions), and it cannot be used in
solutions derived from synthetic data sets.
The third method of comparison consists in using

indices of internal evaluation [22], [23], [24], which are
capable of assessing solutions using only information
inherent to the data set. Cheng and Church [4] proposed
the mean squared residue that measures the goodness
of the pattern found in the gene expression matrix1.
Internal indices consider both the gene and condition
dimensions, therefore the performance of a biclustering
algorithm can be fully assessed. However, internal in-
dices make stringent assumptions about the patterns that
a bicluster should have, but the gene expression patterns
a biological process may exhibit is still an open question.
An external evaluation can be performed when a

reference solution is known (a ground truth, e.g., in ex-
periments with synthetic data sets). A similarity measure

1. Aguilar-Ruiz [25] carried out an in-depth analysis of the mean
square residue, identifying some of its drawbacks.



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2

can then be used to directly compare the found solutions
with the reference one [13], [19], [20], and no assumption
about gene expression patterns has to be made. It has
been mentioned in [8] that an external evaluation is
preferable to assess an algorithm in a given data set,
whereas an internal evaluation can be performed to
investigate why a particular method does not perform
well. Similarity measures are thus an important tool for
comparative studies [8], [13], [26], and an analysis of
their properties would be valuable.
The remainder of this paper is organized as follows.

Section 2 reviews the related work and Section 3 estab-
lishes a common background our paper relies on. Section
4 reviews 14 measures for biclusterings comparison.
Section 5 advocates the use of data matrix entries as
objects to be clustered, transforming biclusterings into
overlapping (soft) clusterings. Section 6 proposes eight
properties that a measure for comparing biclusterings
should have, discusses why they are important, and
proves (by referring to the Appendix) which properties
each measure has. Section 7 provides some examples
from comparative studies in which several measures
convey misleading evaluations due to the absence of one
or more of the discussed properties. The computational
performance and memory footprint of the two biclus-
tering measures we end up recommending are assessed
in Section 7. Section 8 addresses the conclusions. The
Appendix defines two soft clustering measures adopted
in our analysis, presents propositions and proofs, points
to web pages having the implementations of the used
biclustering algorithms, and describes the configuration
of the biclustering algorithms.

2 RELATED WORK
Meila [27] proposed 12 properties of measures for hard
clusterings, discussed their importance, introduced the
variation of information (VI) measure, and analyzed it
along with some other popular measures. Meila [28],
[29] also showed that some clustering measures can be
completely characterized by a set of instructive axioms
and used lattice graph as the mathematical tool in which
the space of hard clusterings can be represented and
studied.
Prelić et al. [8] briefly discussed the existing methods

for comparing biclustering algorithms and introduced
the bicluster relevance and bicluster recovery scores.
Patrikainen and Meila [30] proposed the first frame-

work for comparing subspace clusterings. Most of the
article was dedicated to the special case of axis-aligned
subspace clusterings, in which each cluster is associ-
ated with a subset of attributes. Although biclustering
and axis-aligned subspace clustering algorithms usually
search for distinct types of structures in data, both
produce the same type of clustering solution, which
means that the techniques discussed in [30] can also be
applied when comparing biclusterings. The same article
proposed a set of desirable properties for comparing

non-overlapping subspace clustering and analyzed some
measures in terms of these properties.
Santamarı́a et al. [31] reviewed some internal, external,

and relative validation indices for biclustering. Rosen-
berg and Hirschberg [32] highlighted the importance of
two usually conflicting clustering aspects (homogeneity
and completeness).
Amigó et al. [33] proposed four properties of measures

for hard clusterings, including the homogeneity and
completeness aspects drawn from [32]. The intuition
behind these properties were validated in an experiment
involving human assessments and compared with other
properties in the literature. Lee et al. [24], [34] reviewed
several measures for biclusterings and proposed two
new ones.

3 CLUSTERING BACKGROUND
Let O � {õ1, õ2, . . . , õn} be a set of objects. A hard
clustering of O can be represented by a collection P �
{P1, P2, . . . , Pk} of k subsets Pi (clusters), such that their
union gives O, there is no empty set, and they are
pairwise disjoint (i.e., Pi ∩ Pl = ∅ for i �= l). We call
P a soft clustering if the last constraint (being pairwise
disjoint) is removed [35], [36]. In traditional clustering
analysis, objects in O usually represent the rows of a
data matrix A ∈ Rn·p, such that õj corresponds to the
object represented by the jth row of A.
Let R � {1, 2, . . . , n} and C � {1, 2, . . . , p} be the sets

of indices denoting rows (e.g., genes or documents) and
columns (e.g., conditions or words), respectively, of data
matrix A. In biclustering analysis, bicluster Bi � (Br

i , B
c
i )

is a tuple of two nonempty sets Br
i ⊂ R and Bc

i ⊂ C.
A collection B � {B1, B2, . . . , Bk} of biclusters forms a
biclustering of the data represented by A. Consider the
biclustering represented in Fig. 1. Using the established
notation, we have two biclusters B1 = ({1, 2, 3}, {1, 2})
and B2 = ({2}, {2, 3}). The set B = {B1, B2} represents
the corresponding biclustering. In this context, objects in
O denote data matrix entries (i.e., row-column pairs).

1

2

3

4

1 2 3

ro
w
s

columns

Fig. 1: Data matrix A ∈ R4·3 biclustered into two biclus-
ters.

Some biclustering definitions impose other conditions,
such as no overlap between rows and between columns
(Br

i ∩ Br
l = Bc

i ∩ Bc
l = ∅ for every i �= l) and the

requirement that ∪k
i=1B

r
i = R and ∪k

i=1B
c
i = C [6].

These assumptions are too restrictive and are not made
in the present paper. In fact, let us consider, e.g., gene
expression data, which typically contain thousands of
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genes or possibly the entire genome of an organism.
Some genes will likely not participate in any biological
process under the monitored conditions, which violates
∪k
i=1B

r
i = R. Moreover, in a transcriptomic data set

multiple genetic pathways may be active under one
condition, and a gene may participate in different genetic
pathways under different conditions, which violates
Br

i ∩ Br
l = ∅ ∀i �= l. To detect these gene interactions,

the biclusters must overlap [37]. The same applies to
text documents described by bags of words, where a
document may belong to different categories depending
on the words considered. For these reasons, we have
adopted here the most general form of biclustering
definition.
We say that biclusters Bi and Bl are equivalent, Bi ≡

Bl, iff2 Bi and Bl are constituted by the same rows and
columns. Biclusters Bi and Bl in a solution are equal iff
i = l. We say that B � {Bi}ki=1 and Ḃ � {Ḃi}qi=1 are
equivalent biclusterings, B ≡ Ḃ, iff k = q and there is a
bijection3 {(ti, yi)}ki=1 for which Bti ≡ Ḃyi

for all i. Note
that a solution may have biclusters consisting of one
row and one column. We classify such a biclustering as
degeneratemainly for two reasons: (i) this type of solution
is hardly found in real tasks and (ii) some measures have
certain properties only in the presence of non-degenerate
solutions. Finally, we say that two biclusters Bi and Bl

overlap iff Br
i ×Bc

i ∩Br
l ×Bc

l �= ∅ (i.e., their corresponding
submatrices in A overlap), and a solution having such
biclusters is called overlapping biclustering.

4 CURRENT SIMILARITY MEASURES FOR BI-
CLUSTERINGS

We assume that B � {Bi}ki=1 and Ḃ � {Ḃi}qi=1 are,
respectively, the found and reference biclusterings. Dis-
similarity measures were transformed into similarity
measures for comparison purposes.
Before reviewing the measures that will be analyzed

in this paper, it is worth mentioning that Turner et al.
[38] adapted the F-measure to biclustering, but they
used a concept from a specific model of biclustering
(plaid model) to establish the correspondence between
the found and reference biclusters that severely narrows
its applicability. For this reason, we will not include this
measure in our study.

4.1 Measures Sprel and Sprec

Prelić et al. [8] defined two measures that consider
only the gene dimension, categorizing them as measures
for clusterings comparison. The overall match scores,
which consider both gene and condition dimensions,

2. We use “iff” as a shorthand for “if and only if”.
3. This bijection is between N1,k and N1,q . We will henceforth omit

this detail in similar contexts.

were proposed in their supplementary material. Let

Sr(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

�
|Br

i ∩ Ḃr
l |

|Br
i ∪ Ḃr

l |

�
and (1)

Sc(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

�
|Bc

i ∩ Ḃc
l |

|Bc
i ∪ Ḃc

l |

�
(2)

be match scores for rows and columns, respectively. The
overall relevance and recovery match scores are

Sprel(B, Ḃ) �
�
Sr(B, Ḃ) · Sc(B, Ḃ) and

Sprec(B, Ḃ) � Sprel(Ḃ, B).

4.2 Measures Srnia and Sce

Patrikainen and Meila [30] introduced four measures
for comparing subspace clusterings. In the following,
we define two of them that are theoretically superior
according to their analysis and were the only ones used
in their experimental study. Let Nj1,j2 and Ṅj1,j2 be the
number of biclusters the matrix entry at the j1th row
and j2th column belongs to in biclusterings B and Ḃ,
respectively. The sizes of union and intersection sets that
consider overlapping are

|U | �
�

j1,j2

max{Nj1,j2 , Ṅj1,j2} and (3)

|I| �
�

j1,j2

min{Nj1,j2 , Ṅj1,j2}. (4)

Let

UB �
k�

i=1

Br
i ×Bc

i (5)

be the usual union set of a biclustering B. We have
|U | = |UB ∪UḂ | and |I| = |UB ∩UḂ | for non-overlapping
biclusterings B and Ḃ. The relative non-intersecting area
measure [30] is

Srnia(B, Ḃ) � 1− |U | − |I|
|U | =

|I|
|U | .

Let {(ti, yi)}min{k,q}
i=1 be a unique relation4 that maximizes

dmax �
min{k,q}�

i=1

|Br
ti ×Bc

ti ∩ Ḃr
yi
× Ḃc

yi
|. (6)

The clustering error [30] is given by

Sce(B, Ḃ) � 1− |U | − dmax

|U | =
dmax

|U | .

4. By unique relation we mean left-unique, right-unique relation. For
example, {(1, 3), (4, 2)} is a unique relation between N1,4 and N1,4, but
{(1, 3), (4, 3)} is not.
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4.3 Measure Sl&w

Liu and Wang [39] defined the popular [40], [41], [42]
measure

Sl&w(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

�
|Br

i ∩ Ḃr
l |+ |Bc

i ∩ Ḃc
l |

|Br
i ∪ Ḃr

l |+ |Bc
i ∪ Ḃc

l |

�
.

4.4 Measure Sstm
Let

D(Bi, Ḃl) �
2 · |Br

i ×Bc
i ∩ Ḃr

l × Ḃc
l |

|Br
i ×Bc

i |+ |Ḃr
l × Ḃc

l |
be the Dice index [43] applied to Bi and Ḃl. Santamarı́a
et al. [31] proposed the measure

Sstm(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

�
D(Bi, Ḃl)

�
.

4.5 Measures Swjac and Swdic
Let

J(Bi, Ḃl) �
|Br

i ×Bc
i ∩ Ḃr

l × Ḃc
l |

|Br
i ×Bc

i ∪ Ḃr
l × Ḃc

l |
be the Jaccard index [44] applied to Bi and Ḃl. The
measures proposed by Lee et al. [34] account for the size
of the biclusters:

Swjac(B, Ḃ) �
�k

i=1 |Br
i ×Bc

i | ·maxl∈N1,q

�
J(Bi, Ḃl)

�

�k
i=1 |Br

i ×Bc
i |

and

(7)

Swdic(B, Ḃ) �
�k

i=1 |Br
i ×Bc

i | ·maxl∈N1,q

�
D(Bi, Ḃl)

�

�k
i=1 |Br

i ×Bc
i |

.

(8)

The Swdic measure differs from Sstm as the former assigns
more weight to the evaluation of larger biclusters.

4.6 Measure Sfabi
Hochreiter et al. [37] stated that previous measures de-
signed specifically for biclusterings neither account for
overlapping biclusters nor consider the number of bi-
clusters in the found and reference solutions. As for Sce,
let {(ti, yi)}min{k,q}

i=1 be a unique relation that maximizes�min{k,q}
i=1 J(Bti , Ḃyi

). The fabia measure is

Sfabi(B, Ḃ) �
�min{k,q}

i=1 J(Bti , Ḃyi
)

max{k, q} . (9)

4.7 Measures Su and Se
Bozdag et al. [26] defined the following two measures:

Su(B, Ḃ) � 1− |UḂ | − |UB ∩ UḂ |
|UḂ |

=
|UB ∩ UḂ |

|UḂ |
and

Se(B, Ḃ) � Su(Ḃ, B). (10)

The first is concerned with the uncovered portion of the
reference biclustering and the second is concerned with
the extra portion of the found biclustering.
Ayadi et al. [45] used the measures

Ssh(B, Ḃ) � |UB ∩ UḂ |
|UḂ |

and

Snsh(B, Ḃ) � 1− |UB − (UB ∩ UḂ)|
|UḂ |

based on the work of Cano et al. [22]. Note that
Ssh(B, Ḃ) = Su(B, Ḃ) and Snsh can assign negative
evaluations, whereas Ssh assume values in [0, 1]. On the
other hand, both Su and Se assume values in [0, 1] and
are symmetric in relation to the parameter order. We thus
analyze only the Su and Se measures.

4.8 Measure Say
Ayadi et al. [46] proposed the measure

Say(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

|Br
i ∩ Ḃr

l ||Bc
i ∩ Ḃc

l |
|Br

i ∪ Ḃr
l ||Bc

i ∪ Ḃc
l |
.

Note that |Br
i∩Ḃr

l ||Bc
i ∩Ḃc

l | = |Br
i×Bc

i ∩Ḃr
l×Ḃc

l |, but |Br
i∪

Ḃr
l ||Bc

i ∪Ḃc
l | �= |Br

i×Bc
i ∪Ḃr

l×Ḃc
l | in general (the former is

always greater than or equal to the latter), which makes
Say and Sstm different.

4.9 Measures Serel and Serec
Eren et al. [13] introduced the measures

Serel(B, Ḃ) � 1

k

k�

i=1

max
l∈N1,q

�
J(Bi, Ḃl)

�
and

Serec(B, Ḃ) � Serel(Ḃ, B).

The Serel(B, Ḃ) measure computes the relevance of the
found biclustering, whereas Serec(B, Ḃ) measures the
recovery of the reference biclustering.

5 NEW APPROACH TO EVALUATE BICLUS-
TERING SOLUTIONS
Patrikainen and Meila [30] proposed the use of the set
of data matrix entries as the base element set, instead
of the data set objects, to compare axis-aligned non-
overlapping subspace clusterings. They redefined the
concept of intersection and union sizes used by some
similarity measures for handling the overlapping case,
giving rise to the Srnia and Sce measures defined in Sec-
tion 4.2 and considered in our theoretical and empirical
analysis. We propose a similar approach for representing
biclusterings (for both overlapping and non-overlapping
cases) in that the set of data matrix entries are used as the
base element set, but without relying on the redefinition
of intersection and union sizes. This approach consists
in representing a biclustering by a soft clustering, which
allows taking advantage of measures designed for com-
paring this type of clusterings.
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Consider a data matrix A ∈ Rn·p. Each entry in A
is now an object of a set O � {õ1, õ2, . . . , õn·p} of row-
column pairs, such that A1,1 is represented by õ1, A2,1 by
õ2, . . . , A1,2 by õn+1, and so on. Precisely, the mapping
is defined as

π(j, s) � j + n(s− 1) ∀j ∈ N1,n, ∀s ∈ N1,p, (11)

where õπ(j,s) represents the matrix element of the jth
row in the sth column (i.e., element Aj,s). Any bicluster
Bi � (Br

i , B
c
i ) ∈ B, where B � {B1, B2, . . . , Bk}, can

be converted into a ordinary cluster Pi. To do that, we
define Pi as

Pi �
�

j∈Br
i ,s∈Bc

i

{õπ(j,s)}. (12)

That is, the entries of A biclustered in Bi are clustered
in Pi. Performing this transformation for every i ∈ N1,k

and defining the set {P1, P2, . . . , Pk} produces a soft
clustering of the row-column pairs (i.e., entries in A).
Note that, in principle, some row-column pairs may not
be clustered. For example, many of the elements in a
gene expression data matrix will not exhibit a pattern [6]
and, hopefully, will not be clustered. We can assign each
of these noisy elements to singletons (i.e., sets having
only one element), as these elements should not be
clustered with any other element. Specifically, we define
P as an augmented set given by

P � {P1, P2, . . . , Pk, Pk+1, . . . , Pk+h}, (13)

where Pi for i ∈ N1,k is given by Eq. (12) and the
remaining clusters are the singletons corresponding to
the non-biclustered entries of A.
As an example, let us consider the biclustering rep-

resented in Fig. 1. As discussed above, we have the
biclustering B = {B1, B2}, where B1 = ({1, 2, 3}, {1, 2})
and B2 = ({2}, {2, 3}). Using the representation given in
Eq. (11), we now have the set O = {õ1, õ2, . . . , õ12} of
row-column pairs. Applying Eqs. (12) and (13) provides
P1 = {õ1, õ2, õ3, õ5, õ6, õ7}, P2 = {õ6, õ10}, P3 = {õ4},
P4 = {õ8}, P5 = {õ9}, P6 = {õ11}, P7 = {õ12}, and
P = {P1, P2, . . . , P7}.
After transforming the found and reference biclus-

terings into soft clusterings P and Ṗ , the final step of
the proposed evaluation approach validates P using Ṗ .
We selected two measures for soft clusterings that we
believe are the most promising ones, according to our
experience:

Scsi(B, Ḃ) � CSI(P, Ṗ ) and

Sebc(B, Ḃ) � EBC(P, Ṗ ),

where CSI and EBC are defined by Eqs. (20) and (15) in
the Appendix.
Similarly to biclusters, we say that Pi and Pl are

equivalent, Pi ≡ Pl, iff Pi and Pl have the same objects.
Clusters Pi and Pl in a solution are equal iff i = l. We
say that P � {Pi}ki=1 and Ṗ � {Ṗi}qi=1 are equivalent
clusterings, P ≡ Ṗ , iff k = q and there is a bijection

{(ti, yi)}ki=1 such that Pti ≡ Ṗyi for all i. Note that two
non-equivalent biclusterings can be transformed into the
same soft clustering (Proposition 1 in the Appendix).
However, this is possible only for degenerate solutions
(Proposition 2).

6 THEORETICAL COMPARISON OF SIMILAR-
ITY MEASURES
This section compares the measures discussed so far in
terms of eight properties that we consider relevant for
evaluating biclusterings. Let

I(Bi, Bl) � (Br
i ×Bc

i ) ∩ (Br
l ×Bc

l )

denote intersection between two biclusters.

Definition 1 (Size of Spurious Biclusters). Let {Bti}xi=1

be the set of biclusters in B such that I(Bti , Ḃl) = ∅ for all
l ∈ N1,q and i ∈ N1,x. {Bti}xi=1 is called the set of spurious
biclusters in B. Let B̂ be a biclustering equivalent to B, except
that one or more spurious biclusters were increased in size
and are still spurious. We say that S is sensitive to the size
of spurious biclusters iff S(B, Ḃ) > S(B̂, Ḃ).

Since noisy entries should not be grouped with other
entries, a bicluster containing more noisy entries should
be evaluated as lower in quality. Fig. 2 illustrates this
case. The stars denote the only bicluster of the reference
biclustering Ḃ, and the filled circles represent noisy
entries. Figs. 2a and 2b illustrate two biclusterings B and
B̂ that have two biclusters each. Each solution contains
a bicluster composed of noisy entries, but such spurious
biclusters have different sizes. Table 1 shows that most
of the measures ignore the change in the size of the
spurious bicluster.

ro
w
s

columns

(a) Biclustering B.

ro
w
s

columns

(b) Biclustering B̂.

Fig. 2: Two found biclusterings differing only in the size
of the noisy biclusters.

The union size defined by Eq. (3) increases whenever
a spurious bicluster is increased, which explains why
the Srnia and Sce measures are sensitive to the size of
spurious biclusters. The Swjac and Swdic measures are
also sensitive because the denominators of Eqs. (7) and
(8) increase and the nominators do not change when a
spurious bicluster increases. The Se measure is clearly
sensitive if the domain of biclusterings is restricted to the
non-overlapping ones, but not for the general domain as



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 6

spurious biclusters can be increased without necessarily
increasing |UB | (Eq. (5)). The Scsi and Sebc measures are
sensitive, according to Propositions 3 and 4.

TABLE 1: Evaluation of the biclusterings in Fig. 2.

Meas. Fig. 2a Fig. 2b Meas. Fig. 2a Fig. 2b

Sprel 0.500 0.500 Sfabi 0.500 0.500

Sprec 1.000 1.000 Su 1.000 1.000

Srnia 0.500 0.167 Se 0.500 0.167

Sce 0.500 0.167 Say 0.500 0.500

Sl&w 0.500 0.500 Serel 0.500 0.500

Sstm 0.500 0.500 Serec 1.000 1.000

Swjac 0.500 0.167 Scsi 0.500 0.031

Swdic 0.500 0.167 Sebc 0.963 0.708

Definition 2 (Coverage). Assume that B has less biclusters
than Ḃ (i.e., k < q) and that each bicluster in B is equivalent
to a bicluster in Ḃ. Specifically, B is given by a proper subset
of the biclusters in Ḃ. Thus, S is a measure that penalizes
solutions for not covering all reference biclusters iff S(B, Ḃ) <
1.

Fig. 3 illustrates a case in which the found biclustering
does not cover all biclusters of the reference solution
(represented by blank shapes), which is clearly undesir-
able. However, Table 2 shows that half of the measures
evaluate B in Fig. 3 as a perfect solution.
Measure Sfabi does not attain 1 for solutions having

different numbers of biclusters, implying that it has the
coverage property. Proposition 5 shows that Srnia and Sce
also have the property. Despite their results in Table 2,
Proposition 6 shows that Sprec, Su, and Serec do not have
the property. Propositions 7 and 8 prove that Scsi and
Sebc have the property.

ro
w
s

columns

Fig. 3: Example of a biclustering B not covering the
entire reference solution Ḃ.

Definition 3 (Non-intersecting Area). Let B and Ḃ be two
biclusterings, and let S be the matrix elements that are not
biclustered by Ḃ. Let B̂ be a biclustering that differs from B
only by adding elements from S into biclusters of B and/or by
creating other biclusters with elements only from S. Measure
S penalizes solutions for non-intersecting area iff S(B, Ḃ) >
S(B̂, Ḃ).

The above property is more general than the property
with the same name in [30] because S in Def. 3 can
have elements biclustered in B. The non-intersecting
area property subsumes the intuitive idea that increasing

TABLE 2: Evaluation of the biclusterings in Fig. 3.

Meas. Fig. 3 Meas. Fig. 3

Sprel 1.000 Sfabi 0.667

Sprec 0.770 Su 0.714

Srnia 0.714 Se 1.000

Sce 0.714 Say 1.000

Sl&w 1.000 Serel 1.000

Sstm 1.000 Serec 0.667

Swjac 1.000 Scsi 0.778

Swdic 1.000 Sebc 0.923

solution B without adding matrix elements from Ḃ
should make the resulting solution less similar to Ḃ.
If a measure penalizes solutions for non-intersecting

area, it also has the property given in Def. 1. The only
measures that might satisfy Def. 3 are thus Srnia, Sce,
Swjac, Swdic, Scsi, and Sebc.
Measure Se follows the property only in the domain

of non-overlapping biclusterings, which is clear from Eq.
(10). Propositions 9 and 10 prove that Srnia and Sce have
the discussed property. Measures Scsi and Sebc also have
the property, but in the domain of non-degenerate solu-
tions, according to Propositions 13 and 15. Proposition
11 shows a case in which Swjac and Swdic fail to comply
with the property.

Definition 4 (Multiple Coverage). Let B � {B1} and Ḃ �
{Ḃi}qi=1 be two biclusterings, such that q > 1, Br

1 × Bc
1 =�q

i=1 Ḃ
r
i × Ḃc

i , and Ḃ has no overlapping biclusters. Thus, S
is a measure that penalizes solutions for multiple biclusters
coverage iff S(B, Ḃ) < 1.

We should strive to generate biclusterings that cover
the entire reference solution, but without mixing matrix
entries from different biclusters. The above property
formalizes this idea and was proposed in [30].

ro
w
s

columns

Fig. 4: Found biclustering with one bicluster and refer-
ence biclustering with four biclusters.

Fig. 4 shows an example in which a measure has to
recognize the difference between the solutions. Table 3
shows that only Srnia, Su, and Se could not identify the
difference. Measure Sfabi does not attain 1 for solutions
having different numbers of biclusters, implying that it
has the property given by Def. 4. Patrikainen and Meila
[30] showed that Sce has the property. Propositions 16,
17, 18, and 19 prove that the remaining measures also
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have the property.

TABLE 3: Evaluation of the biclusterings in Fig. 4.

Meas. Fig. 4 Meas. Fig. 4

Sprel 0.500 Sfabi 0.062

Sprec 0.500 Su 1.000

Srnia 1.000 Se 1.000

Sce 0.250 Say 0.250

Sl&w 0.500 Serel 0.250

Sstm 0.400 Serec 0.250

Swjac 0.250 Scsi 0.200

Swdic 0.400 Sebc 0.400

Definition 5 (Repetitive Biclusters). Let Ḃ be a non-
overlapping reference biclustering. Let B be a biclustering
that has one or more biclusters that perfectly match a bi-
cluster from Ḃ. These are called ideal biclusters. Let B̂ be
a biclustering equivalent to B, except that there is one or
more ideal biclusters in B that were replicated. Thus, S is a
measure that penalizes solutions with repetitive biclusters iff
S(B, Ḃ) > S(B̂, Ḃ).

ro
w
s

columns

(a) Biclustering B.

ro
w
s

columns

(b) Biclustering B̂.

Fig. 5: Example of a repetitive bicluster.

Fig. 5a illustrates a biclustering B that has one ideal
bicluster. This bicluster was replicated, giving rise to B̂
in Fig. 5b. Ḃ is defined by blank shapes. Clearly, B is
more similar to Ḃ than B̂ is. However, Table 4 shows that
most of the measures could not identify this difference.
An inspection of Eq. (3) leads to the conclusion that Srnia
and Sce follow the property given by Def. 5. The Scsi
and Sebc measures also have the property, according to
Propositions 20 and 21.
Though Def. 5 applies to the specific case of identical

biclusters, Section 7 shows examples generated by bi-
clustering algorithms in which the measures that do not
have the property have difficulty in penalizing solutions
with several similar biclusters.

Definition 6 (Symmetry). Measure S is symmetric iff
S(B, Ḃ) = S(Ḃ, B) for any B and Ḃ.

The symmetry property is important because it makes
the measure more understandable [27]. We refer the
reader to Table 6, which indicates the presence or ab-
sence of the symmetry property for each measure. The
proofs are straightforward and will be omitted.

TABLE 4: Evaluation of the biclusterings in Fig. 5.

Meas. Fig. 5a Fig. 5b Meas. Fig. 5a Fig. 5b

Sprel 1.000 1.000 Sfabi 0.500 0.500

Sprec 0.577 0.577 Su 0.600 0.600

Srnia 0.600 0.375 Se 1.000 1.000

Sce 0.600 0.375 Say 1.000 1.000

Sl&w 1.000 1.000 Serel 1.000 1.000

Sstm 1.000 1.000 Serec 0.500 0.500

Swjac 1.000 1.000 Scsi 0.714 0.125

Swdic 1.000 1.000 Sebc 0.889 0.800

Definition 7 (Homogeneity). Let B, B̂, and Ḃ be non-
overlapping biclusterings. Let Bi1 ∈ B be a bicluster contain-
ing only matrix elements from biclusters Ḃma(i1) ∈ Ḃ and
Ḃmi(i1) ∈ Ḃ such that |I(Bi1 , Ḃma(i1))| > |I(Bi1 , Ḃmi(i1))|. In
words, Ḃma(i1) is the main category in Bi1 and the remaining
matrix elements come from Ḃmi(i1). Let Bi2 , Ḃma(i2), and
Ḃmi(i2) be analogously defined, such that mi(i1) �= mi(i2),
mi(i1) �= ma(i2), and mi(i2) �= ma(i1). Let B̂ be a bicluster-
ing equivalent to B, except that x > 0 matrix entries from
the minor category in Bi1 were swapped for x matrix entries
from the minor category in Bi2 . Thus, S is a measure that
penalizes less homogeneous solutions iff S(B, Ḃ) ≥ S(B̂, Ḃ),
such that S(B, Ḃ) = S(B̂, Ḃ) iff x = |I(Bi1 , Ḃmi(i1))| =

|I(Bi2 , Ḃmi(i2))|.
The homogeneity has already been proposed [29], [32],

[33] (discussed in [29] as the “problem of matching”) as a
desirable feature of measures for comparing clusterings,
but without such a formalization. A measure should
not be sensitive only to the main category in a found
bicluster, but it should also consider how the rest of the
found bicluster is organized.
Fig. 6a depicts a reference biclustering Ḃ. Figs. 6b and

6c show an example of biclusterings B and B̂ given in
Def. 7. B (Fig. 6b) is clearly a less disrupted solution than
B̂ (Fig. 6c) and, therefore, should be preferred. However,
Table 5 shows that most of the measures did not detect
the difference, as they evaluated both solutions as equal
in quality. Proposition 22 shows that neither Sprec nor
Serec satisfy the condition for homogeneity compliance,
despite their results in Table 5. Propositions 23 and 24
show that Scsi and Sebc have the homogeneity property.

Definition 8 (Conditions for Maximum). We say that
S follows the necessary and sufficient conditions for the
maximum if S is such that: S(B, Ḃ) = 1 iff B and Ḃ are
equivalent biclusterings.

The above property is important because it guarantees
that no better solution exists if the measure attains the
maximum. Proposition 25 shows that Sce(B, Ḃ) = 1
iff B ≡ Ḃ, which was not shown in [30] for the case
in which overlapping is allowed. Proposition 26 shows
that Sfabi also follows the conditions for the maximum.
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(a) Data matrix A ∈ R4·10.

(b) Biclustering B. (c) Biclustering B̂.

Fig. 6: Difference in homogeneity.

TABLE 5: Evaluation of the biclusterings in Fig. 6.

Meas. Fig. 6b Fig. 6c Meas. Fig. 6b Fig. 6c

Sprel 0.775 0.775 Sfabi 0.300 0.300

Sprec 0.707 0.619 Su 1.000 1.000

Srnia 1.000 1.000 Se 1.000 1.000

Sce 0.600 0.600 Say 0.600 0.600

Sl&w 0.714 0.714 Serel 0.600 0.600

Sstm 0.750 0.750 Serec 0.500 0.383

Swjac 0.600 0.600 Scsi 0.467 0.347

Swdic 0.750 0.750 Sebc 0.864 0.800

The Scsi and Sebc measures do not obey such condi-
tions (Proposition 27) even for non-degenerate solutions
(Proposition 28). Tables 1, 4, and 5 show that the re-
maining measures do not follow the conditions for the
maximum.
In summary, Table 6 discriminates each measure ac-

cording to the discussed properties.

6.1 Remarks
Because Sprel, Sprec, Sce, Sl&w, Sstm, Swjac, Swdic, Sfabi,
Say, Serel, and Serec rely on bicluster-to-bicluster assign-
ments, they ignore the relationship between the ma-
trix entries that do not belong to the main category
of the respective bicluster. This type of evaluation is
analogous to the set-matching measures for clustering
comparison (e.g., Meila and Heckerman’s criterion [47],
Larsen and Aone’s criterion [48], van Dongen’s metric
[49]), which present the analogous problem of ignoring
what occurs in the unmatched part of each cluster [27],
[32], [33]. Not coincidentally, none of these biclustering
measures have the homogeneity property given by Def.
7 (see Table 6). We also know that matching clusters
(or biclusters) between found and reference solutions is
somewhat arbitrary [50], [51]; it can be manipulated to

either generate more or less favorable evaluations, as
clustering algorithms (as well as biclustering algorithms)
do not provide such an assignment. The Srnia, Su, and Se
measures are even more extreme because they entirely
ignore the relationship between the matrix entries by
relying their evaluation only on whether a given matrix
entry has been biclustered. Conversely, both Scsi and
Sebc analyze the relationship between each pair of matrix
entries, similarly to well-known pair-based measures for
clusterings, such as Rand index [52], Jaccard index [44],
and adjusted Rand index [53]. This is the reason why
Scsi and Sebc have the homogeneity property.
Measures Sce, Scsi, and Sebc stand out as the top ones

in our theoretical analysis. They differ in what regards
the homogeneity and maximum properties only.

7 EXPERIMENTS

This section describes several experiments whose biclus-
ter models and biclustering algorithms used were drawn
from important studies in the biclustering literature of
gene expression. These experiments show that the dis-
cussed measure properties help understand the results
of real comparative experiments. We also present an
experiment showing that the evaluation performed by
biclustering measures can be used to assess the robust-
ness of a given biclustering algorithm. We then compare
two measures in terms of computational performance
and memory footprint.
Table 15 in the Appendix shows all the biclustering

algorithms used in the experiments along with their
references and sources from which we obtained the
implementations. Table 16 in the Appendix shows the
parameter values used by the biclustering algorithms in
the experiments.

7.1 Empirical Comparative Evaluation

7.1.1 Experiment 1

This experiment follows the constant up-regulated
model of bicluster adopted in an empirical comparative
analysis of biclustering algorithms recently published
[13]. We generated a data matrix with 50 rows and 10
columns5 and inserted a bicluster having an expression
level of 5. The background values were i.i.d. drawn from
the standard normal N(0, 1). The bicluster inserted in
Ḃ is given by Ḃ1 � ({1, 2, . . . , 30}, {1, 2, . . . , 8}). Fig. 7a
shows the data set.
We applied the biclustering algorithms listed in Table

15 to the data matrix. Table 7 shows the results of two
interesting cases (from pcluster and bibit algorithms)
and of an artificial biclustering constituted of only the
first bicluster from the pcluster solution. The pcluster

5. We generated a data set smaller than the ones in [13] for didactic
purposes.
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TABLE 6: Measure discrimination according to the discussed properties.

Properties Sprel Sprec Srnia Sce Sl&w Sstm Swjac Swdic Sfabi Su Se Say Serel Serec Scsi Sebc

Spur. Bic. � � � � �a � �
Coverage � � � � �
Non-int. Area � � �a �b �b

Mult. Cover. � � � � � � � � � � � � �
Rep. Bic. � � � �
Symmetry � � � � �
Homogeneity � �
Maximum � �
a Property valid in the domain of non-overlapping biclusterings.
b Property valid in the domain of non-degenerate biclusterings.

algorithm [54] generated three highly similar biclusters:

B1 = ({1, 2, . . . , 30}, {1, 2, . . . , 8, 10}),
B2 = ({1, 2, . . . , 30, 46, 48}, {1, 2, . . . , 8}), and
B3 = ({1, 2, . . . , 30, 46, 47, 50}, {1, 2, . . . , 8}).

Note that the Srnia, Sce, Scsi, and Sebc measures, which
have the property of detecting replicated biclusters (Def.
5), considerably penalized the pcluster solution. Al-
though not having the above property, the Sfabi measure
severely penalized the pcluster solution, which can be
explained by the difference in the number of biclusters
between the found and reference solutions. The third col-
umn shows the results regarding a biclustering having
only B1 from the pcluster solution. Measures Sl&w and Su
showed small to no difference between the full pcluster
solution, having three nearly identical biclusters, and the
almost perfect biclustering {B1}. Measures Sprel, Sprec,
Sstm, Swjac, Swdic, Say, Serel, and Serec evaluated {B1}
as a worse solution than the full pcluster one, which
is counterintuitive.

TABLE 7: Evaluations regarding the data set in Fig. 7a.

Meas. Pcluster Pcluster {B1} Bibit

Sprel 0.956 0.943 0.718

Sprec 1.000 0.943 1.000

Srnia 0.304 0.889 0.024

Sce 0.304 0.889 0.024

Sl&w 0.950 0.974 0.679

Sstm 0.954 0.941 0.688

Swjac 0.911 0.889 0.531

Swdic 0.954 0.941 0.677

Sfabi 0.312 0.889 0.032

Su 1.000 1.000 1.000

Se 0.795 0.889 0.480

Say 0.912 0.889 0.532

Serel 0.912 0.889 0.549

Serec 0.938 0.889 1.000

Scsi 0.083 0.790 0.004

Sebc 0.687 0.940 0.025

The bibit algorithm [55] found 31 biclusters. All of
them encompass a large portion of the data matrix,
which led Sprec, Su, and Serec to attain 1. This is not
dramatic per se because these three measures should
be taken together with their pairs Sprel, Se, and Serel in
an analysis. However, we believe that a good measure
should evaluate the found solution as very poor because
of the big difference in the number of biclusters. Table
7 shows that the measures that have the property of
detecting replicated biclusters along with Sfabi attained
evaluations close to zero for the bibit solution.

(a) (b) (c)

Fig. 7: Data sets for identifying pathological cases.

7.1.2 Experiment 2
The seminal paper by Madeira and Oliveira [6] proposed
four major classes of biclusters. One of these classes
consists of biclusters with constant values in rows or
columns. We then created a data set with 30 rows and
10 columns having a constant column-wise bicluster
and a constant row-wise bicluster, depicted in Fig. 7b.
Table 8 displays the results of four algorithms. Pcluster
generated the extreme amount of 497 biclusters, but
several of the measures assigned relatively high scores
to it. As in the previous experiment, only the measures
that have the property of detecting replicated biclusters
together with Sfabi attained close to zero evaluations.
Xmotifs [56] found only the constant row-wise biclus-

ter. The Srnia, Sce, Sfabi, Scsi, and Sebc measures, which
follow the coverage property given by Def. 2, detected
the difference between the found and reference solutions.
The Sprec, Su, and Serec measures, which do not follow
the coverage property, also detected the difference. The
reason is that these three measures violate the coverage
property only in certain convoluted situations, as in
Proposition 6. Similarly, the bcca algorithm [57] found
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only the constant column-wise bicluster, and the results
were the same.

TABLE 8: Evaluations regarding the data set in Fig. 7b.

Meas. Pcluster Xmotifs Bcca Msbe

Sprel 0.625 1.000 1.000 0.408

Sprec 1.000 0.707 0.707 1.000

Srnia 0.004 0.500 0.500 0.855

Sce 0.004 0.500 0.500 0.855

Sl&w 0.620 1.000 1.000 0.405

Sstm 0.607 1.000 1.000 0.333

Swjac 0.439 1.000 1.000 0.855

Swdic 0.603 1.000 1.000 0.855

Sfabi 0.004 0.500 0.500 0.333

Su 1.000 0.500 0.500 1.000

Se 0.678 1.000 1.000 0.862

Say 0.392 1.000 1.000 0.333

Serel 0.443 1.000 1.000 0.333

Serec 0.950 0.500 0.500 1.000

Scsi 0.001 0.500 0.500 0.932

Sebc 0.038 0.802 0.802 0.950

The msbe algorithm [39] found six biclusters, in which
the first two perfectly match the reference ones and the
others have no overlap with the reference biclusters:

B1 = ({1, 2, . . . , 10}, {1, 2, . . . , 10}),
B2 = ({21, 22, . . . , 30}, {1, 2, . . . , 10}),
B3 = ({12, 15, 17}, {6, 8, 10}),
B4 = ({11, 19, 20}, {1, 4, 9}),
B5 = ({12, 15, 16, 19}, {3, 4}), and
B6 = ({11, 13, 17, 20}, {2, 6}).

This solution brings to light other measure characteristics
not directly related to the studied properties. The Sstm,
Sfabi, Say, and Serel measures matched biclusters B1 and
B2 with the corresponding reference ones and summed
their contribution to the evaluation. The summation re-
sult was then divided by the number of found biclusters,
explaining why they attained value 2/6. The Swjac and
Swdic measures reached higher values because the sizes
of the correct biclusters are greater than the sizes of the
spurious ones. Measures Scsi and Sebc attained high val-
ues due to their pair-wise based approach of evaluation.
For example, the submatrix corresponding to bicluster
B1 has

�
100
2

�
= 4950 pairs of matrix entries, which

are individually evaluated by Scsi and Sebc, whereas
the submatrix corresponding to the spurious bicluster
B3 has only

�
9
2

�
= 36 pairs. On the other hand, the

other measures evaluate the solutions in terms of matrix
entries, meaning that the found spurious biclusters have
higher relevance in the evaluation. For example, both

Srnia and Sce attained 0.855.

7.1.3 Experiment 3
We created another data set with 20 rows and 10 columns
and only one constant column-wise bicluster, depicted in
Fig. 7c. The las algorithm [58] found the biclusters

B1 = ({1, 2, . . . , 10}, {1, 2, . . . , 10}) and
B2 = ({11, 13, 17, 18}, {1, 4, 5, 6, 7, 9, 10}),

and the cc algorithm [4] found

B1 = ({1, 2, . . . , 10}, {1, 2, . . . , 10}) and
B2 = ({11, 15, 16}, {6, 10}).

The cc solution is better than las’ because the spurious
bicluster is smaller. Table 9 shows that the measures that
are not sensitive to spurious biclusters (Def. 1) did not
detect the difference between the solutions or evaluated
las’ solution as better than cc’s.

TABLE 9: Evaluations regarding the data set in Fig. 7c.

Meas. Las Cc

Sprel 0.652 0.548

Sprec 1.000 1.000

Srnia 0.781 0.943

Sce 0.781 0.943

Sl&w 0.646 0.543

Sstm 0.500 0.500

Swjac 0.781 0.943

Swdic 0.781 0.943

Sfabi 0.500 0.500

Su 1.000 1.000

Se 0.781 0.943

Say 0.500 0.500

Serel 0.500 0.500

Serec 1.000 1.000

Scsi 0.929 0.997

Sebc 0.928 0.987

7.1.4 Prelić’s Experiments
The experiments of Scenario 1 in [8] consist in data
sets with 10 biclusters with 10 rows and 5 columns
each, placed in the diagonal of the data matrix. Fig. 8
illustrates one of the data sets6, to which we applied
the same biclustering algorithms used in [8]. The bimax
algorithm [8] found only one bicluster, which matches
one of the reference ones. Similarly to the results from
the xmotifs and bcca algorithms in Section 7.1.2, Table

6. It can be downloaded from http://www.tik.ee.ethz.ch/∼sop/
bimax/SupplementaryMaterial/Datasets/InSilico/Scenario1/data/
em 1,n 0.15.1.txt.h.
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10 shows that several measures assessed the bimax’s
solution as a perfect one.

Fig. 8: A data set from Scenario 1 in [8].

TABLE 10: Evaluations regarding the data set in Fig. 8.

Meas. Bimax Meas. Bimax

Sprel 1.000 Sfabi 0.100

Sprec 0.100 Su 0.100

Srnia 0.100 Se 1.000

Sce 0.100 Say 1.000

Sl&w 1.000 Serel 1.000

Sstm 1.000 Serec 0.100

Swjac 1.000 Scsi 0.100

Swdic 1.000 Sebc 0.954

Measure Sebc attained an unexpected high evaluation
for bimax’s solution, which can be explained as follows.
The precision given by Eq. (14a) is 1, as expected.
The recall given by Eq. (14b) is an average over object
evaluations, which means an average over matrix entry
evaluations by following our approach. A matrix entry
that is not biclustered in found and reference solutions
attains evaluation 1. Since by far most matrix entries
corresponde to that case, the recall attained the high
evaluation of 0.91, explaining the value given by Sebc.
On the other hand, Scsi evaluates each pair of matrix
entries and consolidates them in Eqs. (18) and (19). The
pairs of noisy entries (the reddish elements in Fig. 8),
which are by far the most abundant type of pairs in this
problem and on which the found and reference solutions
agree, do not contribute to the Scsi evaluation because
both agreement and disagreement functions (Eqs. (16)
and (17)) assign 0 to them. The remaining pairs consist
in pairs of greenish entries and pairs of greenish and
reddish entries, on which the found and reference so-
lutions generally disagree. Precisely, the agreement and
disagreement terms (Eqs. (18) and (19)) attained values
1225 and 11025, respectively.

7.1.5 Eren’s Experiments

We generated a data matrix with 50 rows and 20 columns
having three biclusters that follow the shift model used
in [13]. Fig. 9 depicts the data matrix. The reference

biclusters are

Ḃ1 � ({1, 2, . . . , 25}, {1, 2, . . . , 10}),
Ḃ2 � ({1, 2, . . . , 25}, {11, 12, . . . , 20}), and
Ḃ3 � ({26, 27, . . . , 50}, {1, 2, . . . , 10}).

We applied the same biclustering algorithms used in
[13]. The bbc algorithm [16] found only Ḃ2 and Ḃ3, but
Table 11 shows that several measures evaluated the bbc’s
solution as a perfect one, which again can be explained
by their lack of the coverage property given by Def. 2.

Fig. 9: A data set with shift biclusters [13].

TABLE 11: Evaluations regarding the data set in Fig. 9.

Meas. Bbc Meas. Bbc

Sprel 1.000 Sfabi 0.667

Sprec 1.000 Su 0.667

Srnia 0.667 Se 1.000

Sce 0.667 Say 1.000

Sl&w 1.000 Serel 1.000

Sstm 1.000 Serec 0.667

Swjac 1.000 Scsi 0.667

Swdic 1.000 Sebc 0.858

Overall, the only measures that did not show evident
counterintuitive evaluations in the empirical analysis
are the Srnia, Sce, and Scsi measures. Sfabi failed in
Experiment 3 for not discriminating the clearly better
solution from the other. The Sebc measure attained a
high evaluation for a very poor solution in Section 7.1.4,
exposing a conceptual flaw in the application of Sebc
to soft clustering representation of biclustering. Most of
the behavior exhibited by the measures can be explained
with the help of the properties defined in Section 6.

7.2 Further Experiments with Selected Measures
In Section 7.2.1 we show an example of application
where a biclustering measure can be used to assess the
noise robustness of a biclustering algorithm. We em-
ployed Sce and Scsi, the only two measures that showed
superior behavior in both the theoretical (Section 6) and
empirical analyses (Section 7.1). Section 7.2.2 evaluates
the computational performance and memory footprint
of Sce and Scsi, pointing to fast implementations of both.
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7.2.1 Noise Robustness Analysis
The fabia algorithm [37] assumes a multiplicative data
set model described by

A =

k�

i=1

λiz
T
i +Υ,

where λi ∈ Rn and zi ∈ Rp are sparse vectors defining
the i-th bicluster and Υ ∈ Rn·p is the additive noise. The
data sets for this section were generated similarly to the
ones in [37] with n = 50 and p = 20 as follows. The
λi’s were generated by randomly choosing the number
nλ
i ∈ {5, 6, . . . , 10} of rows and zi’s by choosing the
number nz

i ∈ {5, 6, 7} of columns. The nλ
i components

of λi and the nz
i components of zi (randomly chosen)

were set to values drawn from N (µ, 1). The remaining
components from λi and zi were drawn from N (0, 0.22).
The Υ components were drawn from N (0, 32). We gen-
erated 30 data sets for each µ ∈ {0, 1, . . . , 5} using the
above approach and applied the fabia algorithm (with
the configuration given by Table 16) 30 times to each data
set. The best evaluations according to Sce and Scsi were
retained for each data set. Two data sets are represented
in Fig. 10 and the results are found in Fig. 11.

(a) µ = 2.0. (b) µ = 5.0.

Fig. 10: Noisy data sets.
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Fig. 11: Results for the experiments having noise.

The evaluations show that the performance barely
degradated from µ = 5 to µ = 3, showing that the
fabia algorithm is robust for this range of signals and
type of data set. The performance noticeably began to

degradate for µ values smaller than 3. This type of
analysis can be useful for assessing the robustness of
competing biclustering algorithms.

7.2.2 Performance
To assess the computational performance and memory
footprint of the Sce and Scsi implementations, we ran-
domly generated 30 biclusterings having 10 biclusters
each for data sets having varying numbers of rows
n ∈ {50, 100, . . . , 5000} and p = 20 columns. For each
bicluster the numbers of rows nr ∈ {5, 6, . . . , n/10} and
columns nc ∈ {5, 6, . . . , p/2} are randomly drawn, and
the biclustered columns and rows are also randomly
chosen. We evaluated a naı̈ve and a fast Scsi implementa-
tion, both freely available at http://sn.im/26fzpck. The
experiments were performed using the Matlab R2011a
environment on a machine with i7 930 2.80 GHz CPU
having 4 cores and 12 GBs of RAM.
Figs. 12 show that the naı̈ve Scsi implementation is not

only very slow but also could not handle the bicluster-
ings from data sets having more than 800 rows because
of the excessive use of memory. The Sce implementation
is faster and consume less memory than the fast Scsi
implementation. However, the latter is still fast (took 1.3
seconds for n = 5, 000) and modest in memory use (less
than 1 MB for n = 5, 000) for real applications.
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Fig. 12: Implementation performance.

8 CONCLUSIONS
This paper discussed the different types of evaluation
approaches commonly encountered in the gene expres-
sion studies involving biclustering algorithms. One of
these types of evaluation is the external one, which is of
great importance for comparative studies, as explained
in the introduction. We reviewed 14 measures used in
external evaluations for comparing biclusterings and
adapted an approach of subspace clustering comparison
to measure the similarity between biclusterings. This
approach allows the comparison between biclusterings
by using measures for soft clusterings. We then reviewed
and adopted two measures for soft clusterings that we
believe are promising.
We formalized eight properties that a good biclus-

tering measure should have, discussed why they are



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

relevant, and proved which properties each measure
has. The significance of the properties was assessed in
experiments based on bicluster models and biclustering
algorithms used in important studies. The Sce, Scsi, and
Sebc measures stood out as the top ones in the theoret-
ical comparison. However, we identified a problematic
behavior of Sebc in the empirical analysis, namely, the
abundant noisy entries (which is not unusual in real gene
expression data) dominated the Sebc evaluation leading
it to attain a high value to a clearly poor solution. Our
study thus suggests that the Sce and Scsi measures should
be preferred for comparing biclusterings.
An interesting future work would be the an analysis

of the measure behaviors for randomly generated biclus-
terings. It has been appreciated the importance of having
measures for comparing clusterings that show a constant
baseline evaluation for randomly generated solutions
[59], [60], as a strategy to avoid biased evaluations.
The Matlab implementation of all the measures and

the data sets we generated can be found at http://sn.
im/26fzpck.
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